# Quantifying the Ecological uplift and effectiveness of differing stream restoration approaches in Maryland

Joe Acord<sup>1</sup>, Robert H. Hilderbrand<sup>1</sup>, Tim Nuttle<sup>2</sup>, Ray Ewing<sup>2</sup>, Jennifer Hein<sup>2</sup>

<sup>1</sup>Appalachian Laboratory, University of Maryland Center for Environmental Science

<sup>2</sup>Civil & Environmental Consultants Inc, Pittsburgh, PA





#### **Partners**







One University. A World of Experiences.









ENVIRONMENTAL PROTECTION
MONTGOMERY COUNTY • MARYLAND

#### Introduction

- Billions spent in Restoration (Palmer et al. 2014)
- Many studies focus on only a few streams (Violin et al. 2011, Filoso et al. 2015,...)
- Inconsistencies between projects labelled successful and scientific literature



#### Introduction

- Ecosystem health of larger water bodies (Chesapeake Bay) is inherently linked to health of it's tributaries
- A healthy ecosystem is an important consideration for restorations



Photo by USGS

#### Objectives

- Assess how restoration induced changes in a stream's physical attributes change its biological structure
- Define maximal, potential, and realized uplift amongst different restoration types
- Quantify in-stream structures used in restoration and compare to biological structure



#### What is Uplift?

Maximal Uplift Restoration Success Potential Uplift Realized Uplift



Minimally disturbed reference



**Paint Branch Restoration** 

#### Restoration types

#### **Natural Channel Design**



### Regenerative Stormwater Conveyance



#### Where in MD?

- Restorations were selected from Piedmont and Coastal Plain provinces
- 41 restorations: 19 Coastal Plain, 22 Piedmont



#### Site Selection

- Spread restoration types
   between Natural channel design
   (NCD) and regenerative
   stormwater conveyance (RSC)
- Excluded sites with major tributaries occurring anywhere between possible sample sites
- Final sites were selected based on permission





#### Benthic Invertebrates

- Why did we choose invertebrates?
- Invertebrate community structure is important in understanding stream health



#### Stream Health

- Our assessments are like a blood panel for the stream
- Quick and easy way to assess stream health



#### Study Design

- Investigated a combination of physical in-stream habitat, watershed characteristics, and biological (invertebrate) data
- Utilized triplet design approach on streams of interest.





#### Data Collected

- Each site was designed to be comparable to Maryland Biological Stream Survey (MBSS) data.
- All personnel are MBSS certified
- Consulted MBSS data sheets to complete assessments



#### Data Collected

- Benthic Macroinvertebrate samples collected with MBSS protocol
- Picked one 300 organism sample per site.
- Organisms were identified to genus



#### Data Collected

- Used USGS StreamStats
   program to acquire watershed characteristics of all sites
- Gathered Engineer as-built plans for all restorations (still in progress) to quantify in-stream structures





#### Results



#### Piedmont Physical Habitat Index



#### Coastal Plain Physical Habitat Index



#### Benthic Communities are Largely Similar



#### # of Different Sensitive Taxa (EPT Richness)



#### % Urban-Tolerant Taxa (Chironomid)





#### Watershed Characteristics Likely Limiting



#### # of In-stream Structures Inconclusive



#### Conclusions

- Despite areas of uplift within physical habitat parameters, biological data did not respond quite the same way
- Piedmont NCD sites had some individual restoration successes but several cases with negligible success
- Coastal Plain NCD had more successes than not, however, minimal improvement

- Coastal Plain RSC had uplift in downstream and restoration sections, but success still minimal
- As-built surveys (although preliminary) has not shown strong conclusions toward instream structures and ecological uplift



#### Thank You!



- -Stream physical habitat improved after restoration
- -Benthic macroinvertebrates also showed slight improvement in restored reaches where Natural Channel Design restoration was used and downstream from Regenerative Stormwater Conveyance
- -There is more work to be done comparing specific restoration structures with benthic macroinvertebrates
- Considerations regarding stream benthic macroinvertebrates
  - Time since restoration
  - Recolonization potential
  - Watershed condition
  - Factors that may be difficult to address with stream restoration alone, but that could be limiting.

## UMCES Translation Slides

- -Stream physical habitat improved after restoration
- -Benthic macroinvertebrates also showed slight improvement in restored reaches where Natural Channel Design restoration was used and downstream from Regenerative Stormwater Conveyance
- -There is more work to be done comparing specific restoration structures with benthic macroinvertebrates
- Considerations regarding stream benthic macroinvertebrates
  - Time since restoration
  - Recolonization potential
  - Watershed condition
  - Factors that may be difficult to address with stream restoration alone, but that could be limiting.