Maryland's Stream Ecology

Context for the Restoration Research Grant Program

Monitoring and Non-Tidal Assessment Division

Signs of Improvement in Chesapeake Bay

Improving Nitrogen Trends in Maryland Rivers

Habitat Examples

Relatively large % of species that live in freshwater streams are imperiled

Imperiled Taxa - United States

Stream Ecology in Policy and Regulations

Examples:

- Anti-Degradation (Tier II)
- Impaired Waters
- Biological Stressor ID
- Endangered Species
- Water Quality Criteria
- Designated Uses

Stream Health

Management Strategy 2015–2025, v.2

Maryland Biological Stream Survey Sites

Are Stream Conditions Improving?

Reasons we might expect stream biological condition to have improved over time

- Restoration
- Nutrient reduction
- Less acidic deposition
- Stream buffer plantings
- Increased land purchases and easements
- Improved farming practices
- Improved connectivity
- Anti-degradation (and other) regulation
- Clean air efforts
- Improvements in stormwater management

Reasons we might expect stream biological condition to have worsened over time

- Increased human population and urban development
- Global climate change
- Emerging contaminants
- Invasive species

Biology associated with physical and chemical variables

