An evaluation of forest impacts compared to benefits associated with stream restoration

Ginny Rogers, Versar Inc.

Verl Emrick, Virginia Tech-Conservation Management Institute

Restoration Research Forum June 12, 2019

Overall Research Question

 What are the impacts of stream restoration on the biological communities currently found on the floodplain?

Specific Research Questions

- Does the reconnection of the floodplain to the stream alter the functional composition and diversity of plant communities?
- Do invasive species increase or decrease after the floodplain is hydrologically reconnected to the stream?
- Are soil nutrients stocks in the floodplain altered in response to the reconnection to the stream?
 Or changes in plant functional composition?

Plant Functional Groups - Definition

How does restoration impact ecosystem function?

 Functional groups are defined as "groupings of species which perform similarly in an ecosystem based upon a set of common biological attributes" (Lavorel et. al, 1997)

Plant Functional Groups

- **C**₃ **grasses** perennial grasses with a more "primitive" carbon pathway during photosynthesis. These plants are adapted to cool season establishment and grow in either dry or wet environments. Examples include: sedges, fescues, rushes, cattails.
- C₄ grasses perennial grasses with a more complicated carbon pathway. They are adapted to warm or hot season conditions, with higher temperature and light requirements and have a higher productivity than C₃ grasses. Examples include: Japanese stilt-grass (invasive), little bluestem, switchgrass
- Forbs herbaceous plants that are not grasses. Compared to grasses, forbs produce a
 more persistent seed bank and tend to be heartier species. Examples include:
 milkweed, boneset, dandelions, goldenrod.
- **Legumes** herbaceous plants that are important due to their symbiotic relationship with nitrogen-fixing bacteria that contribute nitrogen to the surrounding soil. Legumes produce a pod as their fruit. Examples include: clovers, kudzu (invasive), vetches.
- Woody Plants plants that produce wood as their structural tissue usually trees or shrubs. Woody plants may enhance productivity and participate in carbon storage in an ecosystem.

Study Design-Site Selection

Site Selection Criteria

- Restoration must provide reconnection to floodplain
- Floodplain must be wide enough to place study plots
- Restoration must have nearby reference and control sites
- Dividing Creek, Anne Arundel Community College

Anne Arundel County WPRP

• Church Creek, Annapolis

South River Federation

· Red Hill Branch, Columbia

Howard County DPW

Wheel Creek, Harford County

Study Design-Experimental Design

- Each site has three treatments
 - Restored
 - Reference
 - Control (non-restored)
- Each treatment has three sample "subplots" for a total of nine plots at each sample location

Field Data Collection

- 4 meter subplot:
 - ID every herbaceous plant to species; estimate percent vegetative cover
 - Woody plants < 5cm DBH, ID to species
 - Woody plants >= 5cm DBH, ID to species, DBH, height measurements using clinometer
- 10 meter subplot:
 - Trees >= 5cm DBH, ID to species, DBH, height
- Six soil samples from each plot homogenized to obtain a single sample to be analyzed for N, P, C
- Tree cores for every species encountered at plot
- · Identify any herpetofauna encountered

Functional Groups - Analysis

- Statistical analyses performed:
 - ANOVA examine difference between treatments
 - Pearson Correlation Analysis with soil parameters
 - Linear regression with soil parameters

Results-Functional Composition

Basal Area

Note: Data from 2017 only.

Plant Functional Composition-Woody Cover

Plant Functional Composition-Legume Cover

Plant Functional Composition-C4 Cover

Plant Functional Composition-Invasive Species Cover

Invasive Species - Results

Red Hill Branch

2018 Dominant Ground Cover			
Control	Reed Canary Grass, Japanese Stiltgrass (~ 70% of ground cover); 13 spp.		
Reference	Japanese Stiltgrass (>50% of ground cover); 21 spp.		
Restoration	Japanese Stiltgrass and Mile-A-Minute (~80% of ground cover); 14 spp.		

Functional Richness

Soils - Results

Basic Correlations

Pearson Correlation Matrix									
	C4_C OVE R	C3_CO VER	FORB_CO VER	LEGUME _COVER	WOODY_ COVER	N_MGG	C_MGG	P_MGG	CNRATIO
C4_COVER	1.000								
C3_COVER	-0.359	1.000							
FORB_COVER	-0.085	0.457	1.000						
LEGUME_COVE R	-0.276	-0.032	0.251	1.000					
WOODY_COVER	-0.604	0.254	-0.031	0.154	1.000				
N_MGG	0.283	-0.372	-0.195	-0.051	-0.171	1.000			
C_MGG	-0.087	-0.218	-0.032	0.210	0.049	0.879	1.000		
P_MGG	0.476	-0.132	-0.018	0.186	-0.335	0.430	0.318	1.000	
CNRATIO	-0.684	0.265	0.031	0.224	0.622	-0.577	-0.207	-0.484	1.000

C4 and Phosphorous

Dependent Variable	P_MGG
N	18
p-value	0.046
Squared Multiple R	0.227

C4 and Invasive Species

Dependent Variable	P_MGG
N	18
p-value	0.030
Squared Multiple R	0.262

C4 and C:N Ratio

Woody Cover and C:N Ratio

Dependent Variable	P_MGG
N	18
p-value	0.006
Squared Multiple R	0.386

Conclusions and Discussion-Functional Composition

- Restored sites:
 - Higher species richness and functional richness (not significant)
 - Similar to reference sites
 - Higher C4 cover –Similar to non-reference sites though likely driven by Japanese stilt grass
 - Woody cover higher than reference sites

Soils

 P Stocks correlated with higher C4/invasive species cover (Japanese Stilt grass)

C:N declines as C4 cover increases

C:N increases as woody cover increases

Next Steps?

- Continue sampling at these stations to capture a longer time period
- Add instream work benthic macroinvertebrates, mussels.
- Incorporate direct ecosystem process measurements on floodplain and instream (i.e. Soil CO2 flux, N and P mineralization and uptake rates)
- Calculate total carbon stocks from existing data using allometric equations.
- Increase the size of the sample frame beyond these four stations

Acknowledgments

- Versar staff Kevin McGuckin, Jennifer Saville, Martin Berlett,
 Steve Harriott, Charles Tonkin, Lauren McDonald, etc...
- Nancy Roth, Tetra Tech, Inc.
- Penn State Agricultural Lab (soils analysis)
- Anne Arundel County WPRP
- South River Federation
- Howard County DPW
- Harford County DPW

Funding Partners

STATE HIGHWAY ADMINISTRATION

Translation by Kevin Wilsey

What does this mean for me?

What do I take from this if I am a practitioner:

- Does biodiversity impact performance and water quality?
 - If yes, do we get more credit?

What do I take from this if I am a regulator:

- What are realistic site conditions post-restoration? Can a biodiverse site be achieved?
- Does biodiversity impact water quality? Good or bad?
- Are there potential changes to the plant communities that can have more or less impact on water quality?