TREE TRADE-OFFS IN STREAM RESTORATION PROJECTS: IMPACT ON RIPARIAN GROUNDWATER QUALITY

Presenters: Sujay S. Kaushal1 and Kelsey L. Wood1

Research Team Includes: Philippe G. Vidon2
Joseph G. Galella1

Translation: Ryan Cole3

1University of Maryland
2State University of New York ESF
3Maryland Department of Transportation State Highway Administration
Outline

• Overview/ Key Questions
• Methods/ Study Sites
• Results/ Discussion
• Management Implications
Outline

• **Overview/ Key Questions**
• Methods/ Study Sites
• Results/ Discussion
• Management Implications
Motivation

• Trees in riparian zones provide key water quality functions

• Trees can be removed from riparian zones during stream restoration

• There is a lack in our understanding of the effects of tree removal on water quality
How does removing trees affect groundwater quality?
Research Questions

• What is the impact of riparian tree removal during stream restoration and subsequent recovery (if any) on groundwater quality across restored, degraded, and forested reference sites in Maryland?

• Which type of broadly available data are best suited to predict (through the development of a user friendly tool) both the nominal and cumulative impacts of riparian zones with various history of tree dynamics / disturbance on water quality at the watershed scale?
Experimental Design

• Chronosequence of restoration up to 20 years

• Variety of stream restoration types

• Paired riparian zones with undisturbed trees and with trees removed in same watershed

• Measure concentrations of common plant nutrients and contaminants in ground water
Outline

- Overview/ Key Questions
- Methods/ Study Sites
- Results/ Discussion
- Management Implications
Characteristics of Study Sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Year(s) Restored</th>
<th>Latitude & Longitude</th>
<th>Area of Tree Removal During Restoration m^2</th>
<th>Geology</th>
<th>Soils</th>
<th>Depth to bedrock</th>
<th>Vegetation Present Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus Creek</td>
<td>Planned</td>
<td>38°59'42.3"N, 76°56'45.3"W</td>
<td>Planned</td>
<td>Quaternary gravel and sand</td>
<td>Fine Loam</td>
<td>201 ft</td>
<td>Mature Trees (Maple, Holly, Beech)</td>
</tr>
<tr>
<td>Paint Branch</td>
<td>2014</td>
<td>38°59'43.6"N, 76°55'59.1"W</td>
<td>13,958</td>
<td>Quaternary gravel and sand</td>
<td>Fine Loam</td>
<td>201 ft</td>
<td>Herbaceous near river, Mature trees upland (Tulip Magnolia, Maple, etc.)</td>
</tr>
<tr>
<td>Stony Run</td>
<td>2009</td>
<td>39°21'22.2"N, 76°37'49.3"W</td>
<td>6,089</td>
<td>Late Precambrian to early paleozoic gabbro and norite</td>
<td>Fluvial</td>
<td>201 ft, 25 ft</td>
<td>Young/relatively smaller trees (Redbud, Beech, etc.)</td>
</tr>
<tr>
<td>Scotts Level Branch</td>
<td>2014</td>
<td>39°22'25.7"N, 76°47'41.5"W</td>
<td>9,703</td>
<td>Late Precambrian quartz-feldspar schist and granulite</td>
<td>Fine Loam</td>
<td>201 ft</td>
<td>Transect A: Herbaceous Transect B: Mature trees (Hickory, Oak, etc.)</td>
</tr>
<tr>
<td>Minebank Run - Upstream</td>
<td>1999</td>
<td>39°24'43.0"N, 76°33'12.5"W</td>
<td>No imagery available</td>
<td>Late Precambrian mica schist and gneiss</td>
<td>Fine Loam</td>
<td>201 ft</td>
<td>Mature trees (Sycamore, Beech, Oak, etc.) & herbaceous ground cover</td>
</tr>
</tbody>
</table>

Joseph Galella, UMD
Kelsey Wood, M.S. Thesis
2012 vs. 2014

Joseph Galella, UMD
Well installation

Day 1:
Well installation, xyz

Day 2:
WT (Wells 1, 2); NO₃⁻ (Wells 1, 2 and 3); Ks (Well 1)

FIGURE 1. Schematic Diagram of the Field Layout and Summary of Measurements for the Simplified Method (NO₃⁻, nitrate concentration measurement; WT, water table elevation measurement; Ks, saturated soil hydraulic conductivity measurement; xyz, measurement of relative distances and elevations between wells). The dashed line indicates the water table.

Sampling Wells
Routine Monthly

Measure depth to the water table.

Collect ~200mL water sample from each well and the open channel.

Lab Analyses

Filtered through 0.7µm glass fiber filter

Analyzed on a Shimadzu TOC-L for total nitrogen (TN), dissolved inorganic carbon (DIC), and non-purgeable organic carbon (NPOC).

Aliquot acidified with ultra-pure nitric acid and analyzed on a Shimadzu Ion Coupled Plasma Optical Emission Spectrometer (ICP-OES) for elemental and/or ionic composition of: Ca, K, Mg, Na, S, Al, Cr, Zn, Cu, B, Fe, Mn, Ni, Pb, P, etc.
Outline

- Overview/ Key Questions
- Methods/ Study Sites
- Results/ Discussion
- Management Implications
Sites where trees were removed had higher nutrient concentrations than sites where no trees were removed

• Concentrations of common plant nutrients (nitrogen, potassium, and calcium) were elevated in ground water in sites where trees were removed

• Concentrations of common plant nutrients in groundwater decrease downslope in riparian zones with trees, but increase downslope in riparian zones where trees were removed
Higher nitrogen concentrations in riparian ground water where trees were removed
Higher calcium concentrations in riparian ground water where trees were removed

Kelsey Wood, M.S. Thesis

Ca (mg/L)

Campus Creek (undisturbed)
Paint Branch (trees removed)
Scott's Level (undisturbed)
Scott's Level (trees removed)
Nitrogen concentrations in groundwater decrease downslope in riparian zones with trees.
Nitrogen concentrations in groundwater increase downslope in riparian zones where trees were removed.
Other studies have shown increased nutrient concentrations after tree removal in watersheds

- Löfgren et al. (2009)
 - Increased concentrations of Na, K, N, Cl, etc.
- Martin and Pierce (1980)
 - Increased concentrations of Ca and N.
- Rusanen et al. (2004)
 - Increased concentrations of N.
- Likens et al. (1970)
 - Increased concentrations of N, Ca, K, Na, Mg, etc.
- Hewlett et al. (1984)
 - Increased concentrations of N, K, Na, Ca, Mg, etc.
- Feller and Kimmins (1984)
 - Increased concentrations of N, K, Mg, Ca, etc.
Summary

• Sites where trees were removed had higher nutrient concentrations than sites where no trees were removed

• Tree removal potentially decreases nutrient uptake along riparian groundwater flowpaths

• Work in progress and continuing sampling and analyses across seasons and hydrologic conditions
Future Work

• Topographic survey
 - calculate water table gradients
 - characterize flowpath directions

• Vegetation survey
 - characterize tree species
 - estimate tree biomass

• RZ Tradeoffs nutrient model
 - add a modifying parameter for vegetative disturbance
Outline

- Overview/ Key Questions
- Methods/ Study Sites
- Results/ Discussion
- **Management Implications**
Ryan Cole, Maryland Department of Transportation State Highway Administration
What does this mean for me?

• Results confirm that tree removal impacts water quality

• How long does recovery take?

• What types of vegetation cover type (age and species) have the most effect?

• Does the tree removal affect the overall benefit of the stream restoration project?
Acknowledgment Slide

- Chesapeake Bay Trust, Maryland Department of Transportation State Highway Administration, Maryland Department of Natural Resources
- Michael Dubbin, William Nguyen, Tom Doody, Hector Lopez Lucero, Margaret Houlihan, UMD Department of Geology