
 

 

Climate Impacts to Restoration 

Practices – Project Report 
 

September 18, 2020 

 

 

 

 

PREPARED FOR  PREPARED BY 

Sadie Drescher 

Director, Restoration Programs 

Chesapeake Bay Trust 

108 Severn Avenue,  

Annapolis, MD 21403 

(410) 974-2941 x105 

sdrescher@cbtrust.org 

 Jonathan Butcher 

Tetra Tech 

One Park Drive, Suite 200 

PO Box 14409 

Research Triangle Park, NC 27709  

(919) 485-8278 

jon.butcher@tetratech.com 

 

Contributing authors  

Scott Job, Nancy Roth, Bryan Groza, Brian 

Pickard, and Peter Kwon 

CBT Request #16928, Deliverable # 11 

100-IWM-T39881 

 

 

  

mailto:jon.butcher@tetratech.com


2 

 

 

 

 

This page left intentionally blank 

 



IDF Project Report  September 2020 

i 

 

CONTENTS 

EXECUTIVE SUMMARY .............................................................................................................................. 1 

1.0 INTRODUCTION ..................................................................................................................................... 5 

2.0 METHODS .............................................................................................................................................. 7 

2.1 Statistical Theory .............................................................................................................................. 8 

2.1.1 IDF Updates ............................................................................................................................ 8 

2.1.2 Peaks over Threshold Analysis for Sub-yearly Events ......................................................... 11 

2.2 Runoff and BMP Simulation with SWMM ....................................................................................... 14 

2.2.1 Bioretention ........................................................................................................................... 16 

2.2.2 Extended Wet Detention Basin ............................................................................................. 16 

2.2.3 BMP Sizing with Maryland Environmental Site Design......................................................... 17 

3.0 DATA .................................................................................................................................................... 19 

3.1 NOAA IDF Curve Stations in Maryland .......................................................................................... 19 

3.2 Climate Model Selection ................................................................................................................. 21 

4.0 RESULTS – EXTREME PRECIPITATION ........................................................................................... 37 

5.0 RESULTS – EVENT RUNOFF AND BMP SIMULATIONS ................................................................. 41 

5.1 Runoff ............................................................................................................................................. 41 

5.2 Bioretention BMP ............................................................................................................................ 42 

5.3 Extended Wet Detention BMP ........................................................................................................ 47 

6.0 IMPLICATIONS FOR DESIGN ............................................................................................................. 51 

6.1 Channel Stability ............................................................................................................................. 51 

6.2 Roadway Flooding Risk .................................................................................................................. 58 

6.3 Urban BMP Performance ............................................................................................................... 67 

6.3.1 BMP Systems: Environmental Site Design ........................................................................... 68 

6.3.2 Design of Individual Practices ............................................................................................... 72 

7.0 DISCUSSION ........................................................................................................................................ 75 

7.1 Potential Use of Continuous Simulation ......................................................................................... 75 

7.2 Adaptation of BMPs in a Changing Climate ................................................................................... 76 

7.3 Stream Restoration Design Considerations ................................................................................... 78 

8.0 REFERENCES ...................................................................................................................................... 81 

APPENDIX A. PYTHON CODE ............................................................................................................. 89 

A-1.  IDF Updates ................................................................................................................................. 89 



IDF Project Report  September 2020 

ii 

 

A-2.  Peaks-over-Threshold Analysis ................................................................................................. 108 

A-3.  SWMM Simulations .................................................................................................................... 120 

 

TABLES 

Table 2-1.  Curve Numbers for Environmental Site Design Simulations (MDE, 2009)............................... 18 
Table 3-1.  Key to NOAA Atlas 14 Sites ..................................................................................................... 20 
Table 3-2.  Key to CMIP5 GCM Scenarios in the LOCA Downscaled Climate Data Archive ..................... 23 
Table 3-3.  Bounding Scenarios for Analysis of Changes in Precipitation Volume, ca. 2056 .................... 24 
Table 3-4.  Bounding Scenarios for Analysis of Changes in Precipitation Volume, ca. 2085 .................... 27 

Table 3-5.  Bounding Scenarios for Analysis of the 90th Percentile 24-hour Precipitation Event, ca. 2056 30 

Table 3-6.  Bounding Scenarios for Analysis of the 90th Percentile 24-hour Precipitation Event, ca. 2085 33 
Table 5-1.  Summary of Response of Bioretention to 90th-percentile Event ............................................... 43 

Table 5-2.  Summary of Responses of Bioretention to Future 1-year through 100-year Events ................ 44 

Table 5-3.  Summary of Response of Extended Wet Detention to 90th-percentile Event ........................... 47 
Table 5-4.  Summary of Responses of Extended Wet Detention to Future 1-year through 100-year Events

 ....................................................................................................................................................... 48 
Table 6-1.  Probability of Channel Instability for Runoff from 1 Acre with S/√d50 = 1.75, with and without 

Bioretention BMPs ......................................................................................................................... 55 

Table 6-2.  Probability of Channel Instability for Runoff from 1 Acre Parcel with Alternative S/√d50 at 80% 

Imperviousness .............................................................................................................................. 55 

Table 6-3.  Probability of Channel Instability for Runoff from 25-Acre Parcel based on 1-yr 24-hr Event 

with Alternative Values of S/√d50 .................................................................................................... 58 

Table 6-4.  HY-8 Results, Local Road Culvert ............................................................................................ 63 
Table 6-5.  HY-8 Results, Minor Arterial Culvert ......................................................................................... 64 

Table 6-6.  Polynomial Coefficients for Relationship of Headwater Elevation and Outlet Velocity to Flow 66 
Table 6-7.  Curve Numbers for Environmental Site Design Simulations .................................................... 69 
Table 6-8.  Treatment Volume (QE, inches) for Historic and Predicted Future Climate for Hydrologic Group 

D Soils, Developed Land at 80% Imperviousness ......................................................................... 70 
Table 6-9.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site Design 

Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group A ............................ 70 
Table 6-10.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site 

Design Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group B ................ 71 
Table 6-11.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site 

Design Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group C ............... 71 

Table 6-12.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site 

Design Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group D ............... 72 

 

  



IDF Project Report  September 2020 

iii 

 

FIGURES 

Figure 2-1.  Threshold Value Detected by the Python Algorithm for Site 18-7140 ..................................... 14 
Figure 2-2.  Future 90th-percentile Rainfall Event Predictions for Different GCMs at Site 18-7140 ........... 14 
Figure 2-3.  Schematic of IDF Analysis Tool ............................................................................................... 15 

Figure 2-4.  Curve Number Prediction of Runoff as a Function of Precipitation for Hydrologic Group D 

Soils, Developed Land at 80% Imperviousness ............................................................................ 18 
Figure 3-1.  NOAA Atlas 14 Sites in Maryland and the District of Columbia .............................................. 19 
Figure 3-2.  Example Biplot of Forecast Changes in Average Annual Precipitation and Air Temperature for 

Durham North Carolina for 2050 - 2080 vs. 1950 – 2005 .............................................................. 21 

Figure 4-1.  Projected 25-year IDF Curves for Baltimore WSO Airport ca. 2055 ....................................... 38 
Figure 4-2.  Projected 25-year IDF Curves for Baltimore WSO Airport ca. 2085 ....................................... 39 

Figure 4-3.  Projected Results for 90th Percentile 24-hour Precipitation Event, Aberdeen-Phillips Field ... 40 

Figure 5-1.  Historic and Future Peak Flow Averages by Recurrence ....................................................... 42 
Figure 5-2.  Bioretention Simulation Results for Peak Outflow as a Function of Total Storm Depth .......... 45 
Figure 5-3.  Bioretention Simulation Results for Overflow Volume as a Function of Total Storm Depth.... 46 

Figure 5-4.  Extended Wet Detention Basin Simulation Results for Peak Outflow as a Function of Total 

Storm Depth ................................................................................................................................... 49 
Figure 5-5.  Extended Wet Detention Simulation Results for Overflow Volume as a Function of Total 

Storm Depth ................................................................................................................................... 50 
Figure 6-1.  Stability Transition Frontier for Sand Bed Stream with 1-acre Drainage................................. 53 

Figure 6-2.  Average Mobility Index for 25% (left) and 80% (right) Impervious Cover 1-acre Parcel, S/√d50
 

= 1.75 m-0.5 ..................................................................................................................................... 54 
Figure 6-3.  Predicted Probability of Channel Instability at 25% Imperviousness for Runoff from a 1 Acre 

Site with S/√d50 = 1.75 using the Logistic Regression of Bledsoe and Watson (2001) ................. 54 

Figure 6-4.  Histogram of Individual Station/GCM/Imperviousness for Probability of Channel Instability 

with S/√d50 = 1.75, 1 Acre Drainage, and no BMP ......................................................................... 56 
Figure 6-5.  Inverse Cumulative Distribution Function (Percentage Greater than Specified Level) of 

Individual Station/GCM/Imperviousness for Probability of Channel Instability with S/√d50 = 1.75, 1 

Acre Drainage, and no BMP .......................................................................................................... 56 

Figure 6-6.  Average Mobility Index for 25% (left) and 80% (right) Impervious Cover, 25-acre Parcel, 

S/√d50
 = 0.35 m-0.5 .......................................................................................................................... 57 

Figure 6-7.  Average Mobility Index for 80% Impervious Cover, 25-acre Parcel, S/√d50
 = 0.35 m-0.5 (left) 

and S/√d50
 = 1.0 m-0.5 (right) ........................................................................................................... 57 

Figure 6-8.  Minor Arterial Road Culvert, HY-8 Specifications .................................................................... 60 

Figure 6-9.  Local Road Culvert HY-8 Specifications ................................................................................. 61 
Figure 6-10.  Relationship between Peak Flow from 1-acre (80% Impervious) and 24-hour Precipitation 

Depth .............................................................................................................................................. 62 
Figure 6-11.  Relationship of Headwater Elevation and Outlet Velocity to Flow for Local Road (Left) and 

Minor Arterial (Right) Culvert Designs ........................................................................................... 65 
Figure 6-12.  Predicted Frequency of Road Overtopping under Future Climate, Local Road Culvert ....... 66 
Figure 6-13.  Predicted Frequency of Road Overtopping under Future Climate, Minor Arterial Culvert .... 67 

Figure 6-14.  Curve Number Prediction of Runoff as a Function of Precipitation for Hydrologic Group D 

Soils, Developed Land at 80% Imperviousness ............................................................................ 69 
 

  



IDF Project Report  September 2020 

iv 

 

 

 

 

 

 

 

(This page left intentionally blank.) 

 



IDF Project Report  September 2020 

r  1 

 

EXECUTIVE SUMMARY 

Intense precipitation events are increasing in the mid-Atlantic region and climate models suggest this 

trend may continue.  We derive projections of future extreme precipitation and runoff events throughout 

Maryland.  These suggest that infrastructure sized to handle historic weather may be inadequate in future 

and that urban stream channels may become less stable; however, pollutant removal functions of 

stormwater best management practices appear less likely to be adversely affected. 

Warmer air can hold more precipitable water and associated potential energy.  A warming climate can 

thus increase the risk of extreme rainfall events.  Recent observations document an increased frequency 

of extreme rainfall events throughout the eastern United States and in the Chesapeake Bay watershed.  

Climate models generally predict that these trends will continue.  However, there is also considerable 

uncertainty about the practical implications of these predicted trends for designers and planners.  First it 

is not precipitation itself, but the runoff generated by precipitation that is of most concern to the 

performance of stormwater infrastructure and the protection of stream channel integrity.  Further, while a 

general trend of increases in extreme precipitation events is well supported by broad spatial averages 

over the ensemble of multiple climate model runs, predicted results at specific locations and in individual 

climate models can be quite different from one another. 

In many U.S. jurisdictions, including Maryland, designs for stormwater infrastructure rely on estimates of 

the recurrence interval or frequency (F) of a storm of a given intensity (I) and duration (D) – the so-called 

IDF curve.  For example, regulations might require that a minor road culvert be designed to pass the flow 

resulting from the precipitation associated with the 24-hour storm event that would reoccur, on average, 

once every 25 years.  The National Oceanic and Atmospheric Administration (NOAA) has published IDF 

curves for weather stations throughout most of the U.S.  For Maryland, these IDF curves are developed 

by a statistical extreme value fit to series of annual maximum daily precipitation recorded through 

December 2000. 

Use of the NOAA IDF curves implicitly assumes that weather observed through 2000 is applicable to 

current and future conditions.  The evidence already suggests that changes in the IDF relationships have 

occurred since 2000, while climate models predict continuing changes. 

How can we account for such changes, especially regarding future conditions that may be encountered 

during the design life of a project?  Global climate models have limited skill at predicting extreme 

precipitation events.  For one, many of the most intensive rainfall events are associated with convective 

storms that occur at spatial scales that are smaller than the grid size of global climate models and with 

tropical storm events that are inherently difficult to predict.  One potential solution is to use a regional 

weather model to predict more local responses when used with the global climate model providing 

boundary conditions.  This is an informative exercise, but different regional models also differ, further 

increasing the multiplicity and potentially the range of results.  More importantly, regional models are 

computationally expensive to run.  The Coupled Model Intercomparison Project of the World Climate 

Research Programme in its most recently completed 5th round of experiments (CMIP5) includes output 

from over 32 different global climate models, each of which was run for at least two greenhouse gas 

forcing scenarios and it is not readily feasible to run all these permutations through a regional model – 

especially as the results of the new CMIP6 updated runs are now becoming available. 

For this project we take a different, more computationally efficient approach to evaluating IDF curves 

consistent with CMIP5 global climate results.  Essentially, we ask the question “What would the NOAA 
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IDF curves look like if they had been calculated from annual maximum precipitation series that had been 

modified to reflect changes in climate conditions indicated by the global climate models?”  To do this we 

first make use of readily available climate prediction series that have already been downscaled to a 

smaller spatial scale and a daily time step.  This is done using a “constructed analogs” approach, in which 

a library of historical observation series is used to scale from a monthly to a daily time step, ensuring a 

reasonable representation of the temporal structure of local rainfall, coupled with a spatial bias correction 

step based on comparison to historic observations that reduces the spatial size of the output grid to 1/16 

degree (approximately 6.9 x 5.4 km at the latitude of Baltimore). 

Our approach does not assume that the downscaled global climate models are able to provide accurate 

estimates of future extreme rainfall events.  Rather, we assume that, for a given global climate model, the 

relative change between historic and future conditions for events of a given recurrence can be used to 

assess the likely change in the annual maxima series used to develop NOAA’s IDF curves.  We then re-fit 

the extreme value distribution to the revised maxima series to generate a climate modified IDF curve.  

This method is computationally efficient and allows us to generate potential future IDF relationships using 

multiple climate models at all 74 Maryland stations for which NOAA has published IDF curves. 

Design of “green” management practices for water quality treatment is often based on retaining the runoff 

from the 90th or 95th percentile (i.e., sub-yearly) 24-hour precipitation event.  The IDF analysis based on 

annual maxima series is not applicable to sub-yearly events.  However, a similar updating procedure was 

constructed on a peaks-over-threshold analysis.  A database containing estimates of future IDF curves 

and 90th percentile events was constructed for all 74 Maryland stations analyzed by NOAA.  For each 

station this includes estimates of conditions centered at 2055 and 2085 from four different climate 

models, selected to represent a drier case (10th percentile of all models in total rainfall volume), a wetter 

case (90th percentile), and two cases near the median for a low and a high greenhouse gas emissions 

scenario. 

Results of the IDF analysis suggest a widespread risk under future conditions of increased intensity of 

extreme precipitation events of a given duration and recurrence.  However, this increase is not consistent 

among GCM scenarios downscaled by LOCA, with some models predicting drier conditions with a lesser 

frequency of extreme rainfall events.  Consistent changes were not predicted in the magnitude of the 90th 

percentile event.  This is in line with studies that suggest total annual precipitation volume will most likely 

increase under future climate, but that much of this increase will be associated with more extreme, low-

recurrence events.  The 90th percentile results thus appear to be “good news” as they suggest that many 

water quality best management practices (BMPs) that are optimized to capture and treat pollutants 

associated with sub-yearly recurrence events are likely to continue to provide expected services under 

future climate. 

Once estimates of the precipitation distributions are obtained it is necessary to calculate runoff.  This was 

done by routing the precipitation through EPA’s Storm Water Management Model (SWMM) using a 

generic unit-area representation of an urban landscape with varying levels of impervious.  SWMM was 

also used to represent performance of bioretention cells and extended wet detention pond BMPs, 

representative of green and gray approaches to stormwater management. 

As with precipitation, there is a wide range of predictions from different climate models and different 

stations for extreme runoff.  However, by the end of the century, peak runoff rates are predicted to 

increase, on average, about 13 – 14 percent, with slightly higher increases for longer recurrence intervals 

and lower impervious percentages. 
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Both bioretention and extended wet detention BMPs tended, on average, to produce less outflow and 

lower peak flows in response to the 90th percentile event under future climate.  However, for large, longer 

recurrence events future predictions include increased peak flows and a larger volume of flow that 

overflowed or bypassed the BMP. 

We undertook three additional analyses to evaluate practical consequence of these predicted changes in 

precipitation and runoff: 

• Channel Stability and Stream Restoration Design:  Stream restoration design seeks to create 

stable, resilient channels.  Stability is highly site-specific and, in addition to runoff, depends on 

channel substrate, slope, and existing morphology.  However, analysis of stability indices for 

channel-forming flows suggest that changes in IDF relationships will increase the risk that some 

streams will shift from stable to unstable conditions. 

• Roadway Flooding Risk and Culvert Design:  Undersized culverts are a common cause of 

hazardous road overtopping during high flow events.  Maryland specifies design standards for 

culverts based on road class and service life.  For example, a culvert on a local road must be 

designed to safely pass the peak runoff from a 10-year 24-hour storm and has a minimum service 

life goal of 50 years.  Model simulations suggest that a culvert designed for the current 10-year 

storm may have, on average, a risk of overtopping of about 15% by 2055 and a risk of 37% by 

2085.  This may indicate a need to revise design standards to address nearer-term conditions 

and the possible need for a larger culvert at the end of the 50-year service life. 

• BMP Performance Efficiency:  The Maryland Department of the Environment has adopted an 

Environmental Site Design approach for new development under which the combination of BMPs 

on a site needs to control runoff in response to the 1-year 24-hour storm so that it is no greater 

than the runoff that would be expected for the same site with a cover of undeveloped woods in 

good condition.  We examined how these design criteria might fare under future climate and 

found that only a small increase in risk is anticipated on average, largely because the projected 

changes in the 1-year event are small. 

Adaptation to a changing climate is challenging because models, while numerous, are uncertain, there is 

no single best predictor of the future, and the course of climate response will depend on human political 

and economic decisions.  Exercises like this report help inform us about the range of risks that may need 

to be faced but deciding where to balance risk and cost is inherently political.  What is clear is that it is 

preferable to employ solutions that are resilient and adaptable – able to perform well under a variety of 

future conditions and amenable to be adjusted with low regret costs if the future is not as predicted.  In 

this context, stormwater management using green components such as bioretention that can be 

expanded or altered as needed are likely preferable to gray infrastructure such as retention basins that, if 

they turn out to be undersized, are difficult and expensive to replace.  Low-regret opportunities that 

benefit resource management regardless of whether and how climate changes are preferable. 

For climate-smart stream restoration design, resilience and adaptability should be explicit objectives.  

Maintaining floodplain connectivity is one key to building natural resilience and designs should anticipate 

greater uncertainty in the flow regime, not just increases in large events.  The overall goal is to maximize 

the ability of the stream to adjust gradually to a range of potential, but uncertain, hydrometeorological 

changes over the design life of the project. 
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1.0 INTRODUCTION 

Engineering design for stormwater management is largely based on empirical evidence obtained from 

past data with the assumption that the frequency of extreme events that is likely to be seen in the future 

can be inferred from the historical record.  This implies that climate is stationary; however, in many 

regions of the U.S., the intensity and frequency of major precipitation events is projected to increase 

(Hayhoe et al., 2018).  Predicted changes in future climate imply the end of the assumption of stationarity 

that has provided the foundation of water management for decades, as was announced by Milly et al. 

(2008).  Commenting on the “death of stationarity”, Galloway (2011) noted “there is also a great need to 

provide those in the field the information they require now to plan, design, and operate today’s projects.” 

Kunkel et al. (2013) identified increasing trends in the number of 2-dau precipitation events exceeding a 

once-in-five-year threshold throughout the eastern half of the U.S.  Easterling et al. (2017) in the Fourth 

National Climate Assessment reported changes in both the number and magnitude of large precipitation 

events.  Hoerling et al. (2016) looked at precipitation above the 95th percentile daily event and found 

consistent increases in the Northeast but not in the Southeast U.S.  (Maryland is on the border between 

the two regions).  Howarth et al. (2019) summarize recent observations for the Northeast U.S. and 

identified statistically significant increases in the top one percent of daily rainfall events.  Expected 

increases in the frequency of intense rain events in the Chesapeake Bay watershed is supported by the 

4th National Climate Assessment (Dupigny-Giroux et al., 2018).  Thibeault and Seth (2014) and Lynch et 

al. (2016) also document recent observed and future projected increases in intense rain events in the 

area. 

Design of urban stormwater BMPs typically begins with consideration of rainfall recurrence intervals, 

which may be translated into design storm specifications or runoff depth.  Practices are designed to 

achieve a level of service or performance associated with controlling a certain design storm, combination 

of design storms, and/or runoff depth to reduce flooding, stream erosion, and pollutant loading.  In most 

areas, design standards for BMPs incorporate sizing requirements based on storms of a specified 

intensity, duration, and frequency (IDF analysis).  The performance of stormwater practices is dictated 

primarily by precipitation IDF, impervious surface area, and soils, along with life cycle maintenance 

(Berndtsson, 2010; Claytor and Schueler, 1996; Gallo et al., 2012, Hunt et al., 2012, Kadlec and Knight, 

1996, Khan et al., 2012; Roseen et al., 2009).  If the IDF relationships change, the design standards for 

both gray and green infrastructure components should change as well to preserve retention capacity and 

treatment contact times that are essential to treatment efficiency.   

IDF curves graphically summarize the relationship between precipitation intensity and the duration of 

precipitation events for a given frequency or recurrence interval.  IDF curves provide important 

information for engineering design and planning purposes.  From one perspective, updating IDF curves 

for future climate is simple – conditional on reliable estimates of the distribution of future precipitation 

events.  Unfortunately, the skill of GCMs in predicting individual precipitation events is limited, especially 

convective storm events that provide the most intense storms yet occur at spatial scales smaller than the 

resolution of GCMs.  For light precipitation, GCMs tend to overestimate the frequency but reproduce the 

observed patterns of intensity relatively well.  For heavy precipitation, GCMs roughly reproduce the 

observed frequency, but underestimate the intensity (Sun et al. 2006; Sillmann et al. 2013; Mehran et al. 

2014).  Some of the biases inherent in GCMs are resolved by downscaling results to a finer, local scale, 

often with a bias correction step.  However, Maraun et al. (2010) conclude that serious deficiencies 
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remain in the ability of downscaling methods to generate local precipitation series with the correct 

temporal variability. 

For most of the U.S. (including Maryland), estimates of precipitation frequency at pre-defined recurrence 

intervals of once per year through once per 1,000 years for specific weather observation stations are 

provided as IDF curves and tables in the National Oceanic and Atmospheric Administration (NOAA)’s 

Atlas 14 (e.g., Perica et al., 2013) and companion Precipitation Frequency Data Server 

(https://hdsc.nws.noaa.gov/hdsc/pfds/).  A specific objective of the work described in this report is to 

provide a method to update Atlas 14 IDF curves to reflect potential future changes in model-predicted 

local climate.  To satisfy this objective it is important to understand the way in which the Atlas 14 

estimates were created.   

Frequency estimates in Atlas 14 are based on fitting an extreme value distribution (in most cases, a 

generalized extreme value [GEV] distribution) to the time series of annual maximum precipitation (AMP) 

amounts at a station for seventeen durations ranging from 15 minutes to 60 days.  The AMP series 

consists of one measurement per year (the largest depth observed for a given duration) and does not 

account for the possibility of more than one event in a year exceeding a threshold of interest.  The true 

probability of occurrence of events of a given intensity and duration should be derived from the partial 

duration series, which includes all events of a specified duration and above a pre-defined volume 

threshold.  Frequency estimates for partial duration series were developed by NOAA for Atlas 14 from the 

series of AMPs using Langbein’s conversion formula, which transforms a partial duration series-based 

average recurrence interval (ARI) to an annual exceedance probability (AEP): 

 𝐴𝐸𝑃 = 1 − exp (− 
1

𝐴𝑅𝐼
) Equation 1 

Selected partial duration ARIs are first converted to AEPs using this formula, and frequency estimates 

were then calculated for the AEP using the GEV fit to annual maxima.   

For Atlas 14, NOAA fit the GEV for each station using the method of L-moments (Hosking and Wallis, 

1997), incorporating regionalization across approximately the 10 nearest stations for higher order L-

moments.  NOAA does not release the fitted coefficients of the GEV distribution, although the AMP series 

are provided via ftp server.  Because the NOAA method is ultimately based only on annual maxima (the 

AMP series), only AMPs are needed for future climate conditions and not the complete time series.  The 

theoretical basis for updating Atlas 14 IDF curves is presented in Section 2.1. 

Storms of more frequent occurrence than once per year are also relevant to BMP and restoration design 

but cannot be reliably analyzed from AMPs alone.  Analysis of these more frequent storms requires a 

somewhat different “peaks over threshold” approach, as is also described in Section 2.10. 

The size of precipitation events is generally of less direct concern than the amount of runoff produced by 

the event, which in addition to precipitation, depends on antecedent moisture conditions, the extent to 

which the landscape produces direct runoff (which is closely related to the amount of impervious surfaces 

that are present), and the degree to which management practices retain or infiltrate stormwater.  

Evaluating runoff requires combining precipitation estimates with a rainfall-runoff model (Section 2.2). 

These tools are combined with climate model projections (Section 3.0) to produce precipitation and runoff 

results under future climate for Atlas 14 stations throughout Maryland (Sections 4.0 and 5.0).  The 

remaining sections investigate how projected changes may affect aspects of stormwater infrastructure 

design and stream restoration activities 
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2.0 METHODS 

Updating the IDF curves in Atlas 14 or similar statistical estimates of large precipitation events for future 

climate requires understanding how the extreme value distribution fit to annual maximum precipitation 

series may change.  Over the past two decades – and especially since the 2008 call-to-arms of Milly et al. 

– numerous researchers have explored methods for predicting future changes in extreme precipitation 

and IDF relationships.  While many different methods have been used, all have in common a recognition 

that the current generation of GCMs has relatively low skill in predicting extreme precipitation events, 

especially those associated with convective storms, which occur at scales smaller than GCM grids.  In 

essence, predicting extreme precipitation events is a specific form of the general problem of downscaling 

from global models that produce monthly-scale climate projections to place-based predictions at daily and 

sub-daily time scales.  Research in this field falls into four general classes (with terminology in part 

adapted from Arnbjerg-Nielsen et al., 2013): 

1. Conditional Probability (weather generators): One response to the deficiencies in GCM 

simulation of extreme events is to not use the GCM output directly at all, but rather to use 

information from the GCMs to populate statistical weather generators, which are then used to 

estimate meteorological time-series at the desired spatial and temporal resolution.  Conditional 

probability methods for precipitation have long been in use for spatial analyses and were adopted 

for evaluation of climate response by Fowler et al., (2005), Kilsby et al. (2007), Prodanovic and 

SImonovic (2007), and Onof and Arnbjerg-Nielsen (2009).  The method remains popular for areas 

that lack long term rainfall data (e.g., Shrestha et al., 2017).  A fundamental challenge of this 

approach is determining the short duration statistical moments of the weather generator from 

GCM output that does not provide the necessary temporal resolution 

2. Empirical Transfer Functions:  Another approach that avoids direct use of GCM precipitation 

output is to develop a surrogate relationship between extreme precipitation and other GCM 

outputs that are presumed to be predicted with greater accuracy.  For example, Willems and Vrac 

(2011) developed transfer functions based on atmospheric pressure, while Dahm et al. (2019) 

developed an approach to project rainfall extremes by scaling the empirical relationship to 

dewpoint temperature.  While promising, this approach appears to require development of 

transfer function relationships on a site by site basis to obtain robust predictions. 

3. Dynamical Downscaling (Regional Climate Models): An alternative approach to improving 

rainfall projections for future climate is to use GCM output as boundary conditions to drive a 

smaller-scale regional climate model (RCM), or even smaller scale local area model (LAM) that 

presumably has better predictive capabilities for local rainfall events.  This approach is known as 

dynamical downscaling.  Future precipitation time series are typically obtained directly from the 

RCM or LAM output.  Use of dynamical downscaling for precipitation extreme analysis has 

soared in popularity with the increasing availability of RCM output produced as part of the 

CORDEX (Coordinated Regional Climate Downscaling Experiment; http://www.cordex.org/) effort.  

Examples include Rosenberg et al. (2010), DeGaetano and Castellano (2017), Li et al. (2017), 

Lettenmaier et al. (2017), Vu et al. (2018), Kristvik et al. (2019), and Cannon and Innocenti 

(2019).  The advantages of this approach depend on the level of accuracy that is achieved by the 

smaller-scale model.  One problem with direct use of RCMs is that they generally still do not 

explicitly model small-scale cloud processes that cause intense convective storms, for which 

LAMs with horizontal scales finer than about 3 km may be needed (Arnbjerg-Nielsen et al., 2013).  

http://www.cordex.org/
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Validation of these models is required before they can be used as input for local climate change 

impact studies (Arnbjerg-Nielsen et al., 2013).  Further, dynamical downscaling is a time-

consuming process, and results at the RCM scale are not available for many GCMs, much less 

LAM analyses. 

4. Statistical Downscaling: In recent years, statistical approaches to downscaling have become 

widely available.  Statistical downscaling is based on relationships that interpolate large-scale 

GCM output to observations of historical weather and climate (Wood et al., 2004; Maurer et al., 

2007).  Recent advances in statistical downscaling, such as the LOCA (Pierce et al., 2014) and 

MACA (Abatzoglou and Brown, 2012) archives, use a constructed analogs approach, in which a 

library of historical observation series is used to scale from monthly to daily time step, ensuring a 

reasonable representation of the temporal structure of local rainfall.  The downscaling process 

incorporates a bias correction step and ensures that local, daily time series projections exhibit 

patterns similar to historical observed data.  This achieves a spatial resolution of 1/6 degree 

(approximately 6.9 x 5.4 km at the latitude of Baltimore).  The LOCA downscaling approach was 

developed to address some shortcomings of the older bias-correction constructed analog 

approaches to avoid damping of local precipitation extremes.  Statistically downscaled time series 

from a GCM could be used to directly estimate IDF relationships or used to describe the relative 

change in the extreme value distribution underlying the IDF relationship (e.g., Srivastav et al., 

2014a), as described below.  A potential refinement of the approach is to select the downscaling 

analogs specifically on the basis of representation of extreme precipitation events (Castellano 

and DeGaetano, 2017; DeGaetano and Castellano, 2017; So et al., 2017).  The refined approach 

focusing on extreme values appears promising but has not been implemented on a national 

basis.  Any statistical downscaling approach is subject to the caveat of an implicit assumption that 

it assumes historical spatial relationships between GCM output and local climate will remain 

unchanged over time (Nover et al., 2016). 

Some authors have also suggested that the whole framework of IDF curves, with assumption of constant 

or stationary parameters (conditional on climate) is misguided and that it is instead preferable to use an 

extreme value distribution with non-stationary parameters that could be derived either empirically (based 

on observations) or in reference to climate models.  This type of approach is combined with Bayesian 

conditioning and uncertainty analysis by Cheng and AghaKouchak (2014), and Ragno et al. (2018); see 

also Huard et al. (2010). 

2.1 STATISTICAL THEORY 

2.1.1 IDF Updates 

Many of the approaches described above for downscaling precipitation extremes are complex and require 

detailed site-specific analyses.  Which approach is theoretically optimal for prediction appears to remain 

an open question.  Our intention here is to use methods that are efficient, use widely available statistically 

downscaled data, are consistent with Atlas 14 procedures and results that are incorporated into many 

local regulations and design guides, and are model agnostic.  A simple, computationally efficient 

approach to updating IDF curves was proposed by Srivastav et al. (2014a, 2014b).  Their insight was that 

the essence of the problem was the need to update extreme value distributions for future conditions, and 

that this could be done through a direct analysis of the distributions.  The general concept of the approach 

of Srivastav et al. (2014a) is described as follows: “…quantile-mapping functions can be directly applied 
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to establish the statistical relationship between the AMPs of a GCM and sub-daily observed data rather 

than using complete records.  Further, the IDF is a distributional function; therefore, it would be easy to 

derive the functional relationships between the distributions of the GCM AMPs and sub-daily observed 

data.  One way of deriving such relationship is by using quantile-mapping functions.” 

Quantile mapping (QM) methods, otherwise known as cumulative distribution function (CDF) matching 

methods, have long been used as a method to correct for local biases in GCM output.  The method first 

establishes a statistical relationship or transfer function between model outputs and historical 

observations, then applies the transfer function to future model projections (Panofsky and Brier, 1968) 

and has been successfully used as a downscaling method in various climate impact studies (e.g., Hayhoe 

et al., 2004). 

Using the notation of Li et al. (2010), for a climate variable x, the QM method for finding the bias-adjusted 

future value of a climate variable can be written as: 

   𝒙𝒎−𝒑.𝒂𝒅𝒋𝒔𝒕. =  𝑭𝒐−𝒄
−𝟏 (𝑭𝒎−𝒄(𝒙𝒎−𝒑)) Equation 2 

where F is the CDF of either the observations (o) or model (m) for observed current climate (c) or future 

projected climate (p), and F-1 is the inverse of the cumulative distribution function.  The bias correction for 

a future period is thus done by finding the corresponding percentile values for these future projection 

points in the CDF of the model for current observations, then locating the observed values for the same 

CDF values of the observations. 

A significant weakness of the QM method is that it assumes that the climate CDF does not change much 

over time, and that, as the mean changes, the variance and skew do not change, which is likely not true 

(e.g., Milly et al., 2008).  To address these issues, Li et al. (2010) proposed the equidistant quantile 

mapping (EQM) method, which incorporates additional information from the CDF of the model projection.  

The method assumes that the difference between the model and observed value during the current 

calibration period also applies to the future period; however, the difference between the shape of the 

CDFs for the future and historic periods is also taken into account.  This is written as: 

 𝒙𝒎−𝒑.𝒂𝒅𝒋𝒔𝒕. =  𝒙𝒎−𝒑 +  𝑭𝒐−𝒄
−𝟏 (𝑭𝒎−𝒑(𝒙𝒎−𝒑)) − 𝑭𝒎−𝒄

−𝟏 (𝑭𝒎−𝒑(𝒙𝒎−𝒑)) Equation 3 

where the form and parameters of the CDF are not yet specified.  Srivastav et al. (2014a) argue for using 

EQM to update IDF curves; however, the specific method of Srivastav et al. (2014b) is not directly 

applicable to updating Atlas 14 IDF curves in the US for several reasons: 

• Bias-corrected statistically downscaled climate model output were not widely available for 

Canada; therefore, the Srivastav et al. (2014a) method must also incorporate a spatial 

downscaling step from the coarse scale of GCMs, whereas output that is already spatially 

downscaled to a fine resolution grid is readily available for the US. 

• The method of Srivastav et al. justifies use of EQM, but largely consists of a multi-step QM 

procedure, without full implementation of the EQM corrections proposed by Li et al. (2010). 

• Canada assumes that the AMP series follows a Gumbel, rather than the GEV distribution that is 

mostly commonly used in the U.S. 

To address these issues, we re-derived under contract with USEPA an EQM method that is consistent 

with U.S. design guidelines and makes use of statistically downscaled climate data readily available from 

GCM output. 
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Our approach uses a combination of EQM and QM to update IDF curves for any location conditional on 

output of GCMs for future climate conditions, implemented in Python code.  The EQM approach can be 

used to update IDF curves for any location conditional on downscaled output of GCMs for future climate 

conditions.  The process begins with GCM output that has already been subject to spatial bias correction 

and downscaling to a finer spatial scale.  The calculation step consists of additional spatial downscaling 

from the climate output grid to the specific point location of a weather station used by Atlas 14 along with 

bias correction for the AMP series (as distinct from the general bias correction of the complete 

precipitation series) using the EQM method for different time durations from sub-hourly to daily.   

The historical data for this analysis are the historical AMP series used by Atlas 14 (𝑋𝑎𝑚𝑝
𝑆𝑇𝑁 ).  Model data 

include the predicted AMP series from 1950 to 2005 as historical period (𝑋𝑎𝑚𝑝
𝐺𝐶𝑀) and future period (e.g., 

2050- 2080, centered at 2065) of interest (𝑋𝑎𝑚𝑝
𝐺𝐶𝑀𝐹𝑈𝑇).  A GEV distribution is fit to each of these series, 

using the L-moments method (Hosking and Wallis, 1997; implemented in Python in lmoments3 v1.0.4 

[Hollebrandse et al., 2015]), consistent with Atlas 14 methods. 

To apply the EQM method, quantiles of modeled future AMP series are matched to the distribution for 

historical AMPs.  For a given percentile, it is assumed that the difference between the model and 

observed value also applies to the future period.  There are two EQM factors as in Equation 3.  The first 

is: 

 𝒀𝒂𝒎𝒑
𝒂𝒅𝒋𝟏

=  𝑭𝒐−𝒄
−𝟏 (𝑭𝒎−𝒑(𝒙𝒎−𝒑)) = 𝑭−𝟏((𝑭(𝑿𝒂𝒎𝒑

𝑮𝑪𝑴𝑭𝑼𝑻|𝜽𝑮𝑪𝑴𝑭𝑼𝑻))|𝜽𝑺𝑻𝑵), Equation 4 

where the vertical bar “|” indicates conditional dependence, i.e., 𝐹(𝑿𝑎𝑚𝑝
𝐺𝐶𝑀𝐹𝑈𝑇|𝜽𝐺𝐶𝑀𝐹𝑈𝑇) indicates the 

cumulative distribution function (GEV for this case) of the future GCM AMP series calculated at the 

cumulative probability corresponding to 𝑿𝑎𝑚𝑝
𝐺𝐶𝑀𝐹𝑈𝑇using the parameter set 𝜽𝐺𝐶𝑀𝐹𝑈𝑇calculated for that future 

series.  𝜽𝑆𝑇𝑁 represents the GEV parameters from fit to the Atlas 14 AMP series.  To account for the 

difference between the CDFs for the model outputs of future and current periods, a second adjustment 

factor is calculated:  

 𝒀𝒂𝒎𝒑
𝒂𝒅𝒋𝟐

= 𝑭𝒎−𝒄
−𝟏 (𝑭𝒎−𝒑(𝒙𝒎−𝒑)) = 𝑭−𝟏((𝑭(𝑿𝒂𝒎𝒑

𝑮𝑪𝑴𝑭𝑼𝑻|𝜽𝑮𝑪𝑴𝑭𝑼𝑻))|𝜽𝑮𝑪𝑴) Equation 5 

The projected AMP series is then calculated as: 

 𝒀𝒂𝒎𝒑
𝑺𝑻𝑵_𝑭𝑼𝑻 = 𝑿𝒂𝒎𝒑

𝑮𝑪𝑴_𝑭𝑼𝑻 + 𝒀𝒂𝒎𝒑
𝒂𝒅𝒋𝟏

− 𝒀𝒂𝒎𝒑
𝒂𝒅𝒋𝟐

 Equation 6 

Once this series is calculated, a GEV fit is applied to estimate the full distribution of the future extreme 

events for the local station.  This EQM step is applied to update the 24-hour IDF curves.  We include 

corrections for constrained data (i.e., results for a given duration that are artificially truncated by crossing 

over the midnight boundary) using the Atlas 14 factors at this step.  The CDFs and inverse CDFs of the 

GEV and other extreme value distributions are provided by the lmoments3 Python library. 

The second step in adjusting the IDF curves is temporal downscaling to convert future daily extremes into 

sub-daily extremes.  The QM method was used for this purpose:  First find the corresponding percentile 

values for these future projection points in the CDF of the model for the historical period, then locate the 

observed values for the same CDF values of the sub-daily observations.  For rainfall duration i: 

 𝒀𝒂𝒎𝒑,𝒊
𝑮𝑪𝑴_𝑭𝑼𝑻_𝒔𝒖𝒃𝟐𝟒 = 𝑭−𝟏 ((𝑭(𝒀𝒂𝒎𝒑

𝑮𝑪𝑴_𝑭𝑼𝑻_𝟐𝟒𝒉|𝜽𝑺𝑻𝑵_𝟐𝟒𝒉)|𝜽𝒊
𝑺𝑻𝑵𝒔𝒖𝒃𝟐𝟒)) Equation 7 

As noted in later volumes of Atlas 14 (e.g., Perica et al., 2013), estimates for shorter durations can be 

noisy due to limited data availability and are improved by smoothing.  To account for the short modeling 
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simulation period, the modeled extreme values with less than 24 hours’ duration are thus smoothed by 

fitting them to a linear regression relative to the daily maximum series before fitting them to the GEV 

distribution.  Atlas 14 uses a regression with an intercept for this purpose: 

 𝒀𝒂𝒎𝒑
𝑮𝑪𝑴_𝒔𝒖𝒃𝟐𝟒 = 𝒂𝟏 ∗ 𝒀𝒂𝒎𝒑

𝑮𝑪𝑴_𝟐𝟒𝒉 + 𝒃𝟏 Equation 8 

 𝒀𝒂𝒎𝒑
𝑮𝑪𝑴_𝑭𝑼𝑻_𝒔𝒖𝒃𝟐𝟒 = 𝒂𝟐 ∗ 𝒀𝒂𝒎𝒑

𝑮𝑪𝑴_𝑭𝑼𝑻_𝟐𝟒𝒉 + 𝒃𝟐 Equation 9 

We found that for some Maryland stations the recommended smoothing step could produce negative 

estimates of AMS depths.  This was resolved by switching to a zero-intercept regression in which b1 and 

b2 are constrained to be zero. 

The adjusted model predictions ( 𝒀𝑎𝑚𝑝
𝑮𝑪𝑴_𝑭𝑼𝑻) are then used to fit the GEV distribution with the L-moments 

method, and the model predicted partial duration series (PDS) series were retrieved from the derived 

GEV distribution at given annual exceedance probability (AEP).   

 𝒀𝒑𝒅𝒔
𝑮𝑪𝑴_𝑭𝑼𝑻 = 𝑭−𝟏((𝑭(𝒀𝒂𝒎𝒑

𝑮𝑪𝑴𝑭𝑼𝑻|𝜽𝒀
𝑮𝑪𝑴𝑭𝑼𝑻))|𝑨𝑬𝑷) Equation 10 

In cases where there are discrepancies between different sub-daily durations (e.g., the 1-hour estimate is 

greater than the 2-hour estimate), Atlas 14 suggests maintaining consistency by increasing the estimate 

for the longer return interval.  This proved problematic because the shorter sub-daily durations (often 

estimated from limited data at a station) are much less stable than the daily estimates (which typically 

have long runs of data), especially for high recurrence intervals.  We revised the approach by enforcing 

consistency from the more stable daily estimates downwards to the shorter intervals.  For example, if the 

1-hour estimate was greater than the 2-hour estimate we reduced the 1-hour estimate rather than 

increasing the 2-hour estimate. 

The final future 1 to 24-hour IDF ordinates are estimated by multiplying the Atlas 14 published values by 

the ratio of fitted GEV PDS results for climate-adjusted future conditions to the fitted GEV PDS results 

obtained for the Atlas 14 observed data: 

 𝑰𝑫𝑭𝑭𝑼𝑻 =  𝑰𝑫𝑭𝑨𝒕𝒍𝒂𝒔 ∗
𝒀𝑮𝑪𝑴_𝑭𝑼𝑻

𝒀𝑺𝑻𝑵
 Equation 11 

This last step adjusts for the regional representation of higher L moments that is incorporated in the 

original Atlas 14 calculations but not explicitly documented for individual stations. 

2.1.2 Peaks over Threshold Analysis for Sub-yearly Events 

The IDF procedures described above are applicable to storm events with a return period of 1 year or 

greater and is most relevant to flood and channel stability analyses.  For water quality, design of 

individual management practices for water quality treatment is most commonly based on more frequent 

events, such as the 90th percentile 24-hour rainfall event.  The distribution of a sub-yearly event can be 

analyzed in a manner analogous to the AMP series for IDF.  The primary difference is that the distribution 

of the 90th percentile event can be described by a Peaks-over-Threshold (POT) approach, which 

characterizes the frequency of events greater than a specified magnitude (Serinaldi and Kilsby, 2014).  

As the value of the threshold (u) increases, the distribution of the POT (prob Y = (X-u)|X > u) converges to 

a generalized Pareto distribution (GPD; Pickands, 1975; Balkema and de Haan, 1974): 

 𝑯(𝒚) = 𝟏 −  (𝟏 +  𝝃
𝒚

𝝈̃
)

−𝟏
𝝃⁄

 Equation 12 
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in which {y: y > 0 and 1 +  𝜉
𝑦

𝜎̃
> 0} and 𝜎̃ =  𝜎 +  𝜉(𝑢 − 𝜇), μ is the location parameter, σ > 0 is the scale 

parameter, and ξ is the shape parameter.  An EQM updating procedure for the GPD, analogous to that 

described above for the GEV distribution using H(y) and its inverse, was developed to estimate the 

distribution of future 90th percentile events and map the changes implied in historic and future GCM runs 

onto historic data.   

Unlike the AMP analysis, the POT analysis requires working with a complete series of daily precipitation 

depths, along with multiple iterations to determine the appropriate threshold for the analysis of events.  

Precipitation gauge series typically have missing or accumulated data, which complicate the automation 

of the analysis.  As with the IDF analysis, we address this issue by using PRISM daily gridded 

precipitation estimates that are fit to observed records but filled to provide complete “observed” time 

series with bias correction (http://prism.oregonstate.edu).  

An important issue for the POT analysis is determining the appropriated threshold for the GPD, which can 

have a significant influence on the analysis of precipitation records.  A review by Langousis et al. (2016) 

found that methods of determining the threshold based on GPD asymptotic properties can lead to 

unrealistically high threshold and shape parameter estimates, while nonparametric methods found in the 

literature were generally unreliable.  Much better results were obtained using the graphical Mean 

Residual Life Plot method (Davison and Smith, 1990).  In this method, the proper threshold for the GPD 

analysis is obtained by plotting the mean of the excesses as a function of the threshold and identifying the 

lowest threshold above which the number of excesses increases linearly with the threshold value.  While 

this method has generally been interpreted graphically, Langousis et al. (2016) provide a method for 

automating threshold detection from a continuous daily precipitation time series: 

1. Estimate the mean value of the excesses e(u) = E[X-u|X>u] above different thresholds ui = Xi,n, 

i=1, 2, . . ., n-10, where Xi,n denotes the ith (ascending) order statistic in a sample of size n. 

2. For each ui (i=1, 2, . . ., n - 20) in Step 1, apply weighted least squares to fit a linear model to all 

points (uj, e(uj)) that satisfy j ≥ i.  To account for the increase of the estimation variance of e(u) 

with increasing threshold u, the weight wj applied to each point (uj, e(uj)) is taken to be inversely 

proportional to the variance of e(u), assuming independence of the excesses.  In this case, wj = 

(n-j)/Var[X-uj|X > uj]. 

3. Determine the optimal threshold u* as the lowest threshold ui (i=1, 2, . . ., n-20) that corresponds 

to a local minimum of the weighted mean square error function of the linear regression, 

Once the threshold (u) of historical daily rainfall extracted from PRISM dataset is detected by the 

automatic method.  The same threshold is applied to daily rainfall series of historical and future predicted 

by GCMs.  Truncated historical and modeled data(X>u) will be used to predict the changes of 90th 

percentile rainfall magnitude with the EQM methods.  To apply the EQM method, quantiles of modeled 

future daily rainfall series are matched to the distribution for historical daily rainfall series.   

 𝒀𝑑𝑎𝑖𝑙𝑦
𝒂𝒅𝒋𝟏

=  𝑯𝒐−𝒄
−𝟏 (𝐻𝒎−𝒑(𝒙𝒎−𝒑)) = 𝐻−𝟏((𝑯(𝑿𝑑𝑎𝑖𝑙𝑦

𝑮𝑪𝑴𝑭𝑼𝑻|𝜽𝑮𝑪𝑴𝑭𝑼𝑻))|𝜽𝑃𝑅𝑆𝐼𝑀), Equation 13 

where the vertical bar “|” indicates conditional dependence, i.e., 𝐻(𝑿𝑑𝑎𝑖𝑙𝑦
𝐺𝐶𝑀𝐹𝑈𝑇|𝜽𝐺𝐶𝑀𝐹𝑈𝑇) indicates the 

cumulative distribution function (GPD with threshold u for this case) of the future GCM truncated daily 

rainfall series calculated at the cumulative probability corresponding to 𝑿𝑑𝑎𝑖𝑙𝑦
𝐺𝐶𝑀𝐹𝑈𝑇using the parameter set 

𝜽𝐺𝐶𝑀𝐹𝑈𝑇calculated for that future series.  𝜽𝑃𝑅𝐼𝑆𝑀 represents the GPD parameters from fit to the PRISM 

daily rainfall series.  To account for the difference between the CDFs for the model outputs of future and 

current periods, a second adjustment factor is calculated:  

http://prism.oregonstate.edu/
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 𝒀𝑑𝑎𝑖𝑙𝑦
𝒂𝒅𝒋𝟐

= 𝐻𝒎−𝒄
−𝟏 (𝐻𝒎−𝒑(𝒙𝒎−𝒑)) = 𝐻−𝟏((𝑯(𝑿𝑑𝑎𝑖𝑙𝑦

𝑮𝑪𝑴𝑭𝑼𝑻 |𝜽𝑮𝑪𝑴𝑭𝑼𝑻))|𝜽𝑮𝑪𝑴) Equation 14 

The projected AMP series is then calculated as: 

 𝒀𝑑𝑎𝑖𝑙𝑦
𝐏𝐑𝐈𝐒𝐌_𝑭𝑼𝑻 = 𝑿𝑑𝑎𝑖𝑙𝑦

𝑮𝑪𝑴_𝑭𝑼𝑻 + 𝒀𝒅𝒂𝒊𝒍𝒚
𝒂𝒅𝒋𝟏

− 𝒀𝒅𝒂𝒊𝒍𝒚
𝒂𝒅𝒋𝟐

 Equation 15 

 

Then the derived future daily rainfall series 𝒀𝑑𝑎𝑖𝑙𝑦
𝐏𝐑𝐈𝐒𝐌_𝑭𝑼𝑻 can be fit to GPD distribution.  Equation 16 was 

used to estimate an unconditional distribution and return value: 

 𝑷𝒓𝒐𝒃(𝒀 > 𝒚) = 𝑷𝒓𝒐𝒃(𝒚 > 𝒖) ∗ (𝟏 − 𝑯(𝒚 − 𝒖; 𝝈, 𝝃)) Equation 16 

 

where 𝑃𝑟𝑜𝑏(𝑦 > 𝑢) could be estimated using the ratio between length of rainfall records above threshold 

and the full rainfall records.  After the probabilities and amounts of rainfall from unconditional distribution 

were derived using Equation5.  The 90th percentile rainfall amount estimated by each GCM was 

calculated using linear interpolation: 

 𝒀𝟗𝟎 =
𝑷𝒓𝒐𝒃𝟗𝟎 − 𝑷𝒓𝒐𝒃𝟗𝟎−

𝑷𝒓𝒐𝒃𝟗𝟎+ − 𝑷𝒓𝒐𝒃𝟗𝟎−
∗ (𝒀𝟗𝟎+ − 𝒀𝟗𝟎−) Equation 17 

where Y90+ and Y90- are the observations closest above and below the 90th percentile in the rainfall series. 

The POT analysis addresses 24-hr events only, so sub-daily analysis is not needed.  We do the analysis 

using daily rainfall depths without constraint correction [adjustment for events that pass through the day 

boundary] as this is the method commonly used in practice to estimate water quality volumes.  

We tested the method through preliminary applications to NOAA Atlas 14 station in Maryland.  A major 

challenge was that the automated selection of the threshold followed by GPD fitting did not always work 

properly and sometimes yielded unreasonable results, especially when a very high threshold was 

selected.  We found that this problem could be solved by providing initial guesses for the parameters of 

the GPD distribution that are in the reasonable range for what is obtained for stations with more stable 

distributions. 

An example of applying the code is shown for Pocomoke City (station 18-7140).  The threshold detection 

method (Figure 2-1) shows the algorithm successfully estimated the rainfall magnitude at the first local 

minimum of weighted mean square error (WMSE).  Figure 2-2 is an example of 90th percentile rainfall 

predictions using all archived GCMs (both rcp45 and rcp85) for 2055 and 2085.    

One interesting result of screening analyses across the full set of Maryland Atlas 14 stations is that the 

90th percentile event may not be predicted to increase, even while a majority of scenarios predict an 

increase in total precipitation volume.   

While total annual precipitation volume is expected to increase across the Eastern U.S. under future 

climate, it is also anticipated that an increasing proportion of annual precipitation will be concentrated in 

larger, more intense events (Kundzewicz et al., 2007; Groisman et al., 2012).  Future climate may 

incorporate both more extreme flood events and longer drought periods, resulting in a situation in which 

the 2- to 500-year storm event magnitudes increase, but the 90th percentile events decrease.  This may 

be good news in the sense that BMPs designed to treat water quality in typical storm events (e.g., about 

10 times per year) may be adequately sized to address future climate, even though flood control 

responses to extreme large events may be inadequate.   
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Figure 2-1.  Threshold Value Detected by the Python Algorithm for Site 18-7140 

 

 

Figure 2-2.  Future 90th-percentile Rainfall Event Predictions for Different GCMs at Site 18-7140 

2.2 RUNOFF AND BMP SIMULATION WITH SWMM 

Precipitation estimates are converted to runoff with EPA’s Storm Water Management Model version 5 

(SWMM5; Rossman, 2015).  To evaluate potential runoff depth on a unit-area basis we route the future 

storms implied by the IDF curves through the SWMM model (version 5.1.013), packaged in a Python 

wrapper with GUI that controls input and output.  The actual SWMM subbasin layout needed to 

accomplish this task is quite simple.  We specify a single BMP catchment (<10 acres and thus not 

requiring time of concentration adjustments) for which the user can specify impervious and pervious 

acreage, roughness, depression storage, and soil/slope properties.  The resulting runoff timeseries can 
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be analyzed directly or routed through a variety of gray and green stormwater BMPs, which are explicitly 

set up using SWMM input templates. 

The IDF curve results are converted into design storm precipitation events for use by SWMM by applying 

the appropriate 24-hr rainfall distribution type identified for the Soil Conservation Service TR-55 method 

(SCS, 1986).  Other, more sophisticated methods of rainfall disaggregation could be used, but we chose 

this older method because it is the approach of choice for many local stormwater design manuals.  

The linkage between the IDF simulations and SWMM is summarized schematically in Figure 2-3.  The 

IDF analysis portion of the tool appears on the right side.  After identification of bounding climate 

scenarios (described in Section3.2), the program queries various data servers and retrieves historic and 

future climate model output for a user-identified location of interest, along with the AMP series for the 

NOAA Atlas 14 station closest to the user location.  

All the components of the system are implemented in Python 3.  The simulation code is provided in the 

Appendix. 
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Figure 2-3.  Schematic of IDF Analysis Tool 

For the project we built BMP templates to address a stormwater extended wet detention basin 

(representative of a “gray” engineered storage-based management component),  and a planted 
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bioretention cell (representative of a “green” stormwater infrastructure component that relies on infiltration 

and evapotranspiration of stormwater).  The next two subsections outline the specifications for 

representation of these BMPs: 

2.2.1 Bioretention 

The generic specification for bioretention includes a 9-inch surface ponding depth, 24 inches of growing 

media, and 12 inches of stone drainage layer.  The system is assumed to have an underdrain (4-inch 

pipe in the middle of drainage layer that controls outflow.  The growing media consists of 25% compost 

and 75% sandy soil with a porosity of 0.529 (Fassman-Beck et al., 2015).  The drainage layer has a void 

ratio of 0.54 and a drainage coefficient of 0.18 fir a drain height of 41 inches and drain time of 72 hours. 

Storage volume includes the ponding depth and the storage in the media (taking porosity into account).  

The depth of storage is thus 0.75 ft ponding + 2 ft media x 0.529 porosity = 1.808 ft. 

Maryland uses pre-calculated estimates of WQv and specifies two “rainfall zones” – a western zone and 

eastern zone that use a 0.9 in storm and 1.0 in storm respectively for the WQv calculation.  As a result, 

the assumed bioretention footprint for a given percent impervious area varies by rainfall zone.  This was 

incorporated by assigning each of the 79 Atlas 14 weather station locations to its corresponding rainfall 

zone, and the bioretention footprints were adjusted accordingly. 

In addition, we follow Maryland guidance relative to the following: 

• Footprint relative to the design treatment volume 

• Ponding depth, media depth, and underdrain stone storage layer depth 

• Media composition, which influences porosity, infiltration rate, and hydrologic performance 

• Underdrain offset from the bottom of the stone storage layer 

• Drain time from a completely full state 

2.2.2 Extended Wet Detention Basin 

The Maryland design for wet ponds assumes that untreated runoff will flow into the pond and displace 

“clean” water from the previous storm which has been stored long enough to allow settling and some 

nutrient uptake to take place.  The untreated runoff enters the pond at one end, and the treated water 

exits the other end with minimal mixing of the two (an assumption often referred to as “plug flow”).  While 

the validity of the plug flow assumption is open to debate, the concept is incorporated into numerous pond 

design specifications throughout the U. S.  Maryland requires that the permanent pool volume is at least 

as large as the treatment volume.  In addition to having a WQv requirement, Maryland also specifies a 

recharge volume requirement (REv), a relatively smaller fraction of the WQv that must be infiltrated 

onsite.  Since wet ponds cannot be used to address the REv, we assume the REv has been addressed 

on the site upstream of the wet pond.  As a result, the wet pond pool volume is assumed to be the 

difference between the WQv and the REv.  We then increased the pool volume by 10%, in part to be 

conservative and also because we did not include any recharge BMPs in the simulation upstream of the 

wet ponds.  

Our wet pond representation incorporates design guidance for side slopes, including within the pool, 

safety and aquatic benches, and the storage basin.  An average slope of 34% (run/rise 2.9) was used to 

simplify volume calculations.  We used pyramid sections to develop the stage-area curves used by 

SWMM for the dynamic stage-volume-discharge simulation. 
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Maryland also specifies a Channel Protection Volume (CPv), which is specified as extended detention of 

the 1-yr 24-hr storm event.  Maryland defines extended detention as 12 hours or 24 hours depending on 

the Water Use classification of the receiving water.  The stormwater manual provides a specific method 

for calculating the CPv, the allowable peak discharge for the CPv, and the orifice diameter for the 

allowable peak discharge.  We incorporated all elements of the specifications for each of the 79 Atlas 14 

locations, including WQv Rainfall Zone, Water Use classification, and 1-yr 24-hr storm depth (provided in 

the manual by county).  The wet pond design also incorporates an emergency spillway to safety pass the 

peak flow from the 100-yr 24-hr storm event without overtopping the storage basin. 

2.2.3 BMP Sizing with Maryland Environmental Site Design 

Implicit assumptions about climate are built into guidance and regulations for both systems of BMPs and 

the design of individual BMP types.  Maryland Department of the Environment’s (MDE) 2000 Stormwater 

Design Manual presented calculations for a Water Quality volume (WQv) and a channel protection 

volume (CPv) for the design of stormwater BMPs.  With the 2009 revisions to the Design Manual, MDE 

moved to the more holistic approach of Environmental Site Design (ESD), which combines the WQv and 

CPv objectives to produce a unified approach to stormwater design and management based on the net 

effects of all stormwater controls present on a site (MDE, 2009, Chapter 5). 

The general concept of ESD is to control runoff from a developed site in response to the 1-year 24-hour 

storm so that it is no greater than the runoff that would be expected for the same site with a cover of 

undeveloped woods in good condition, considering the distribution of hydrologic soil groups on the site.  

ESD does not require detailed simulation modeling of developed and undeveloped conditions.  Rather, it 

provides a simplified approach based on the relative change in Curve Number used in the National 

Resources Conservation Service TR-55 method (NRCS, 1986).  The difference in responses to the 1-yr 

24-hr event determines the excess runoff that needs to be treated (QE).  In units of depth, QE = PE x RV.  

RV is the surface runoff fraction, defined as RV = 0.005 + 0.009 x I, where I is the impervious fraction 

expressed as a percentage.  PE is then the excess rainfall amount that needs to be treated.  Rather than 

calculating PE, simple lookup tables are provided (one for each of the four hydrologic soil groups, A, B, C, 

and D).  PE is listed in the table in increments of 0.2 inches and imperviousness in increments of 5% and 

incorporates a single assumption about the 1-yr 24-hr storm across all of Maryland, so the answer is not 

exact, but is sufficient to achieve the desired level of control on average, especially when weighted across 

multiple subareas of a site with differing soil and development characteristics. 

The approach of controlling site runoff to levels expected for woods in good condition is in theory climate 

agnostic because both developed and woods runoff will change if climate changes.  However, the table 

that is used to determine PE is rooted in specific assumptions about the magnitude of the 1-yr 24-hr storm 

event that may not hold under future climate conditions. 

We investigated this issue by examining the changes in precipitation and the resulting difference in runoff 

between developed and good condition woods, as predicted by TR-55, under future climate scenarios for 

the 79 NOAA Atlas 14 stations for which we have developed estimates of the future 1-yr 24-hr event. 

The TR-55 method (NRCS, 1986) predicts runoff (Q, inches) via the curve number equation as  

𝑄 =  
(𝑃 − 0.2 𝑆)2

𝑃 + 0.8 𝑆
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where P is the 24-hr precipitation depth (inches) and S = 1000/CN – 10, where CN is the Curve Number.  

CN assumptions for ESD are shown in Table 2-1.  CNs for developed land were calculated as a weighted 

mixture of the CN for connected impervious area (98) and that for open space in good condition. 

Table 2-1.  Curve Numbers for Environmental Site Design Simulations (MDE, 2009) 

Land Use Hydrologic Soil Group 

A B C D 

Woods, good 

condition 
38 55 70 77 

Developed, 25% 

Impervious 
54 70 80 85 

Developed, 50% 

Impervious 
69 80 86 89 

Developed, 80% 

Impervious 
86 91 93 94 

 

The runoff predicted by the CN method as well as the difference between runoff for developed land and 

good condition woods for a given hydrologic soil group and impervious percentage is an exact second-

order polynomial function of P (Figure 2-4).  This allows direct calculation of the implications of both 

spatial variability and magnitude change in the 1-yr 24-hr event. 

 

Figure 2-4.  Curve Number Prediction of Runoff as a Function of Precipitation for Hydrologic Group D 

Soils, Developed Land at 80% Imperviousness 

Note: Polynomial equation represents the difference between runoff from developed land and runoff from woods in 
good condition. 
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3.0 DATA 

3.1 NOAA IDF CURVE STATIONS IN MARYLAND 

Potential precipitation IDF curves are developed for potential mid-century (ca. 2055) and late-century (ca. 

2085) climate scenarios at all 79 Atlas 14 sites within the state of Maryland (Figure 3-1 and Table 3-1).  In 

addition to the IDF results, we retrieved the AMS series from the NOAA ftp server. 

For stations without hourly data, we developed a lookup that identifies the nearest hourly station, which is 

used as a surrogate for sub daily precipitation at the station of interest.  (Note that the nearest station can 

be in an adjoining state.)  The results at the surrogate station are then scaled by the average ratio of the 

daily total at the station of interest to the total at the surrogate station. 

This scaling approach is conceptually similar to that used in Atlas 14 vol, 2, v. 3.0 (Bonnin et al., 2006) to 

correct for potential discrepancies between daily totals and the sum of hourly precipitation amounts within 

a day.  In Atlas 14, the 1-hour through 12-hour duration data are already adjusted by the ratio between 

the daily and sum of hourly totals.  As the last step of our process applies the estimated change ratio 

between historic and future conditions this ratio adjustment procedure does not need to be reapplied 

here. 

 

Figure 3-1.  NOAA Atlas 14 Sites in Maryland and the District of Columbia 
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Table 3-1.  Key to NOAA Atlas 14 Sites 

18-0185 ANNAPOLIS US NAVAL ACA, MD 18-4780 KEEDYSVILLE, MD 

18-0193 ANNAPOLIS POLICE BRKS, MD 18-5080 LA PLATA 1 W, MD 

18-0335 ASSATEAGUE IS NATL SEA, MD 18-5111 LAUREL 3 W, MD 

18-0465 BALTIMORE WSO ARPT, MD 18-5201 LEONARDTOWN 3 NW, MD 

18-0470 BALTIMORE WSO CITY, MD 18-5865 MECHANICSVILLE 5 NE, MD 

18-0700 BELTSVILLE, MD 18-5894 MERRILL, MD 

18-0705 BELTSVILLE PLANT STN 5, MD 18-5985 MILLINGTON 1 SE, MD 

18-0732 BENSON POLICE BARRACKS, MD 18-6350 NATIONAL ARBORETUM DC, MD 

18-0915 BLACKWATER REFUGE, MD 18-6408 NEW GERMANY, MD 

18-1032 BOYDS 2 NW, MD 18-6620 OAKLAND 1 SE, MD 

18-1125 BRIGHTON DAM, MD 18-6770 OWINGS FERRY LANDING, MD 

18-1385 CAMBRIDGE WATER TRMT P, MD 18-6844 PARKTON 2 SW, MD 

18-1530 CATOCTIN MOUNTAIN PARK, MD 18-6980 PERRY POINT, MD 

18-1627 CENTREVILLE, MD 18-7010 PICARDY, MD 

18-1710 CHELTENHAM 1 NW, MD 18-7140 POCOMOKE CITY, MD 

18-1750 CHESTERTOWN, MD 18-7272 POTOMAC FILTER PLANT, MD 

18-1790 CHEWSVILLE-BRIDGEPOR, MD 18-7325 PRINCE FREDERICK 1 N, MD 

18-1862 CLARKSVILLE 3 NNE, MD 18-7330 PRINCESS ANNE, MD 

18-1890 CLEAR SPRING 1 ENE, MD 18-7700 ROCK HALL, MD 

18-1980 COLEMAN 3 WNW, MD 18-7705 ROCKVILLE 1 NE, MD 

18-1995 COLLEGE PARK, MD 18-7806 ROYAL OAK 2 SSW, MD 

18-2060 CONOWINGO DAM, MD 18-8000 SALISBURY, MD 

18-2215 CRISFIELD SOMERS COVE, MD 18-8005 SALISBURY FAA ARPT, MD 

18-2282 CUMBERLAND 2, MD 18-8065 SAVAGE RIVER DAM, MD 

18-2325 DALECARLIA RESVR DC, MD 18-8315 SINES DEEP CREEK, MD 

18-2523 DENTON 2 E, MD 18-8380 SNOW HILL 4 N, MD 

18-2700 EASTON POLICE BARRACKS, MD 18-8405 SOLOMONS, MD 

18-2770 EDGEMONT, MD 18-8720 TAKOMA PARK BALT AVE, MD 

18-2860 ELKTON, MD 18-8855 TONOLOWAY, MD 

18-2905 EMMITSBURG, MD 18-8877 TOWSON, MD 

18-2906 EMMITSBURG 2 SE, MD 18-9030 UNIONVILLE, MD 

18-3230 FORT GEORGE G MEADE, MD 18-9035 U S SOLDIERS HOME DC, MD 

18-3348 FREDERICK POLICE BRKS, MD 18-9070 UPPER MARLBORO 3 NNW, MD 

18-3355 FREDERICK 3 E, MD 18-9140 VIENNA, MD 

18-3415 FROSTBURG 2, MD 18-9409 WESTERNPORT UPRC, MD 

18-3675 GLENN DALE BELL STN, MD 18-9440 WESTMINSTER POLICE BRK, MD 

18-3795 GRANTSVILLE, MD 18-9570 WILLIAMSPORT, MD 

18-3855 GREAT FALLS, MD 18-9750 WOODSTOCK, MD 

18-3975 HAGERSTOWN, MD   

18-4030 HANCOCK, MD   
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3.2 CLIMATE MODEL SELECTION 

Archives of statistically downscaled climate model output from the 5th round Coupled Model 

Intercomparison Project (CMIP5) include output from 32 or more Global Climate Models/General 

Circulation Models (GCMs) for two or more Representative Concentration Pathways (RCPs) of 

greenhouse gas accumulation.  While it is possible to estimate IDF curves and 90th percentile 

precipitation estimates from all GCMs, it is often more useful to identify a smaller set of GCMs that bound 

the most likely range of predicted future conditions.  Future climate projections are uncertain and are best 

used to describe a probability envelope of potential future conditions (an “ensemble of opportunity”) to 

which adaptation may be needed.  Specifically, climate scenarios that approximate smaller, median, and 

larger range of potential changes in precipitation intensity are useful to frame the problem.  

Different GCM runs provide differing predictions of future temperature and precipitation.  Temperature is 

expected to increase under RCP 8.5 versus RCP 4.5 in most locations, but precipitation may increase or 

decrease.  A typical LASSO biplot of average annual changes in precipitation and temperature from 

statistically downscaled GCM runs is shown for Durham, NC in Figure 3-2.    

 

Figure 3-2.  Example Biplot of Forecast Changes in Average Annual Precipitation and Air Temperature for 

Durham North Carolina for 2050 - 2080 vs. 1950 – 2005 

Multiple GCM runs are available from the CMIP5 experiments (approximately 32 GCMs applied to two or 

more Representative Concentration Pathway (RCP) greenhouse gas scenarios).  We selected 

downscaled GCMs from the RCP 4.5 and RCP 8.5 experiments that approximate the 10th percentile of 

the distribution of predicted change in future rainfall volume, the 90th percentile, and the model ensemble 
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median from each of the two RCPs.  This approach helps to approximate the potential risk envelope of 

future conditions (which are inherently unknowable as they depend on human mitigation actions in the 

interim and are also subject to considerable model uncertainty) while rejecting the most extreme outliers 

among the population of models.  We do not advocate selecting individual GCMs based on their skill in 

predicting historic climate for a given area because past performance is not a reliable guide to future 

prediction under a changing climate (Dixon et al., 2016).   

Because the focus of the work described here is on storm events (whether moderate or extreme), 

selection of central and bounding GCM scenarios can be based on the precipitation axis only.  For 

example, we can select GCM runs from the joint distribution of RCP 4.5 and RCP 8.5 CMIP5 simulations 

near the 10th, 50th, and 90th percentiles of the distribution of projected precipitation volume.  The analysis 

uses the 10th and 90th percentiles, rather than the most extreme outliers, as it is well recognized that 

some individual GCMs may provide unrealistic results for a given area.  It is therefore standard practice to 

ignore the most extreme outliers and use a model at approximately the 90th percentile of the distribution of 

a characteristic of interest from the complete set of models as a reasonable upper bound.  Use of such an 

upper percentile is generally considered appropriate for engineering/hydrologic design planning purposes. 

Philip Morefield of U.S. EPA developed Python code for screening climate scenarios as part of the 

“Locating and Selecting Scenarios Online” (LASSO) tool that scans the downscaled GCM output archive 

monthly data to identify annual and seasonal changes in precipitation volume (lasso.epa.gov).  We 

adapted code from the LASSO tool to do initial screening for our project on precipitation.  However, there 

are numerous ways to do this.  For instance, one could select based on total annual precipitation volume 

or volume in seasons most likely to be associated with floods.  Total annual precipitation volume appears 

to be a sufficient criterion for extreme event IDF analysis but may not be sufficient for analysis of the 90th 

percentile event.  In some cases, GCMs predict that total precipitation volume increase will be largely 

confined to the largest events, with longer intervening drought periods, so an increase in total 

precipitation volume does not necessarily translate to an increase in the 90th percentile event.  Therefore, 

we ranked scenarios separately relative to the 90th percentile event using the following approach: 

1. Calculate the sum of rain events that are greater than or equal to the 90th percentile historical 
rainfall event for each site for each scenario (historical and future).  

2. Convert to the large rain event (>=90th percentile) depth per day 
3. Calculate the relative change rate of the large rain depth per day (rpd):  (rpd_gcm-

rpd_hist)/rpd_hist 
4. Rank the relative changes from all GCMs and get the 10th, RCP4.5 median, RCP85 median, and 

90th GCMs by value.     
 

This simplified screening procedure does not guarantee that the selected scenarios will always 

approximate the 10th to 90th percentile range, which would require an analysis of all GCMs.  It does, 

however, help to ensure that a selection of GCMs with relatively different precipitation predictions will be 

chosen for more detailed analysis. 

Evaluation of downscaled GCM output from the LOCA archive for each MD/DC Atlas 14 station location 

yields selections for IDF analysis based on relative change in annual precipitation volume.  Table 3-2 

shows the 60 LOCA-downscaled GCM and RCP combinations that are evaluated in subsequent tables.  

Table 3-3 then shows the selected scenarios for evaluation of mid-century conditions, while Table 3-4 

shows results for late-century conditions. 

The method selects a wide number of different GCM scenarios but does contain some patterns.  For the 

90th percentile event, the low-end (10th percentile of increases) is associated with the lower greenhouse 

gas forcing or cooler scenario (RCP 4.5) 70 percent of the time, while the high-end (90th percentile) is 



IDF Project Report  September 2020 

r  23 

 

associated with the higher greenhouse gas forcing or warmer scenario (RCP 8.5) 75 percent of the time 

for mid-century conditions in Maryland.  For late-century conditions, the results are 80 and 53 percent, 

respectively.  The reduction in the correlation of the wetter scenarios with warmer conditions may result 

competing effects of the greater moisture-holding capacity of warmer air versus an increase in the 

likelihood of drought.  

Systematic differences among GCMs across Maryland are also evident.  For instance, for the mid-century 

conditions, the 90th percentile is represented in 13 out of 60 cases by the MIROC-rcp8.5 scenario, while 

the 10th percentile is represented in 10 out of 60 cases by the MIROC-ESM_rcp4.5, with no overlap 

between the summary statistics for the two GCMs. 

Table 3-2.  Key to CMIP5 GCM Scenarios in the LOCA Downscaled Climate Data Archive 

1 ACCESS1-0_rcp45 21 CSIRO-Mk3-6-0_rcp45 41 HadGEM2-ES_rcp45 

2 ACCESS1-0_rcp85 22 CSIRO-Mk3-6-0_rcp85 42 HadGEM2-ES_rcp85 

3 ACCESS1-3_rcp45 23 EC-EARTH_rcp45 43 IPSL-CM5A-LR_rcp45 

4 ACCESS1-3_rcp85 24 EC-EARTH_rcp85 44 IPSL-CM5A-LR_rcp85 

5 bcc-csm1-1-m_rcp45 25 FGOALS-g2_rcp45 45 IPSL-CM5A-MR_rcp45 

6 bcc-csm1-1-m_rcp85 26 FGOALS-g2_rcp85 46 IPSL-CM5A-MR_rcp85 

7 CanESM2_rcp45 27 GFDL-CM3_rcp45 47 MIROC5_rcp45 

8 CanESM2_rcp85 28 GFDL-CM3_rcp85 48 MIROC5_rcp85 

9 CCSM4_rcp45 29 GFDL-ESM2G_rcp45 49 MIROC-ESM_rcp45 

10 CCSM4_rcp85 30 GFDL-ESM2G_rcp85 50 MIROC-ESM_rcp85 

11 CESM1-BGC_rcp45 31 GFDL-ESM2M_rcp45 51 MIROC-ESM-CHEM_rcp45 

12 CESM1-BGC_rcp85 32 GFDL-ESM2M_rcp85 52 MIROC-ESM-CHEM_rcp85 

13 CESM1-CAM5_rcp45 33 GISS-E2-H_rcp45 53 MPI-ESM-LR_rcp45 

14 CESM1-CAM5_rcp85 34 GISS-E2-H_rcp85 54 MPI-ESM-LR_rcp85 

15 CMCC-CM_rcp45 35 GISS-E2-R_rcp45 55 MPI-ESM-MR_rcp45 

16 CMCC-CM_rcp85 36 GISS-E2-R_rcp85 56 MPI-ESM-MR_rcp85 

17 CMCC-CMS_rcp45 37 HadGEM2-AO_rcp45 57 MRI-CGCM3_rcp45 

18 CMCC-CMS_rcp85 38 HadGEM2-AO_rcp85 58 MRI-CGCM3_rcp85 

19 CNRM-CM5_rcp45 39 HadGEM2-CC_rcp45 59 NorESM1-M_rcp45 

20 CNRM-CM5_rcp85 40 HadGEM2-CC_rcp85 60 NorESM1-M_rcp85 
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Table 3-3.  Bounding Scenarios for Analysis of Changes in Precipitation Volume, ca. 2056 

Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-0015 50 5 30 60 

18-0185 49 3 14 52 

18-0193 17 3 14 32 

18-0335 15 3 2 34 

18-0465 49 23 4 32 

18-0470 43 41 4 19 

18-0700 40 23 16 11 

18-0705 49 39 16 11 

18-0732 44 23 14 34 

18-0915 45 13 4 48 

18-1032 37 1 20 9 

18-1125 57 51 20 9 

18-1385 17 13 30 60 

18-1530 29 59 36 12 

18-1627 40 3 38 48 

18-1710 57 39 16 60 

18-1750 58 23 4 10 

18-1790 35 53 22 18 

18-1862 57 55 22 11 

18-1890 44 1 8 11 

18-1980 17 13 38 56 

18-1995 57 41 24 11 

18-2060 58 7 30 20 

18-2215 49 19 2 11 

18-2282 29 7 58 48 

18-2325 43 39 24 60 

18-2523 49 39 46 56 

18-2700 50 33 6 32 

18-2770 29 3 20 12 

18-2860 49 51 16 6 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-2905 50 25 20 48 

18-2906 50 25 4 48 

18-3230 40 23 20 60 

18-3348 35 1 36 9 

18-3355 35 1 16 18 

18-3415 45 7 8 14 

18-3675 44 1 24 48 

18-3795 43 51 36 34 

18-3855 40 3 16 47 

18-3975 35 7 22 48 

18-4030 37 39 8 52 

18-4780 29 1 8 48 

18-5080 17 19 4 60 

18-5111 54 15 56 60 

18-5201 45 3 4 48 

18-5865 44 39 8 32 

18-5894 29 15 12 34 

18-5985 40 13 30 56 

18-6350 57 3 18 10 

18-6408 2 3 8 14 

18-6620 37 11 12 47 

18-6770 57 7 24 48 

18-6844 58 15 2 48 

18-6980 29 1 22 60 

18-7010 45 25 58 32 

18-7140 17 31 30 21 

18-7272 40 53 24 6 

18-7325 44 55 4 9 

18-7330 38 3 12 36 

18-7700 17 23 2 56 

18-7705 57 35 8 11 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-7806 57 15 46 22 

18-8000 20 29 36 41 

18-8005 38 7 2 34 

18-8065 17 3 36 18 

18-8315 37 39 12 34 

18-8380 49 39 2 34 

18-8405 45 25 6 48 

18-8720 17 39 24 10 

18-8855 37 51 58 60 

18-8877 49 1 24 6 

18-9030 49 13 22 32 

18-9035 17 33 20 10 

18-9070 37 3 18 21 

18-9140 45 7 46 11 

18-9409 1 3 8 32 

18-9440 49 41 8 48 

18-9570 44 7 10 11 

18-9750 57 1 16 9 

See Table 3-1 for site indices; Table 3-2 for identification of GCM scenarios. 
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Table 3-4.  Bounding Scenarios for Analysis of Changes in Precipitation Volume, ca. 2085 

Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-0015 5 29 16 60 

18-0185 43 15 52 22 

18-0193 43 15 24 22 

18-0335 16 33 6 58 

18-0465 17 31 48 34 

18-0470 49 33 58 18 

18-0700 41 7 6 60 

18-0705 5 29 6 60 

18-0732 41 1 6 34 

18-0915 41 55 46 11 

18-1032 41 23 40 11 

18-1125 37 1 32 11 

18-1385 37 23 40 21 

18-1530 44 1 16 11 

18-1627 37 55 24 22 

18-1710 41 3 24 60 

18-1750 57 15 42 34 

18-1790 17 1 32 11 

18-1862 41 19 16 11 

18-1890 41 53 10 21 

18-1980 44 53 48 56 

18-1995 5 15 6 11 

18-2060 49 53 6 11 

18-2215 25 1 60 24 

18-2282 44 7 6 27 

18-2325 43 1 36 11 

18-2523 17 53 36 22 

18-2700 5 3 36 21 

18-2770 5 1 6 34 

18-2860 37 15 20 40 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-2905 25 55 32 11 

18-2906 17 1 40 11 

18-3230 44 59 32 60 

18-3348 5 59 32 21 

18-3355 2 15 16 56 

18-3415 38 35 10 33 

18-3675 44 33 6 22 

18-3795 43 7 6 21 

18-3855 43 15 24 34 

18-3975 39 9 32 11 

18-4030 57 9 16 33 

18-4780 41 53 8 21 

18-5080 43 15 18 10 

18-5111 41 1 36 56 

18-5201 44 3 40 11 

18-5865 44 3 48 10 

18-5894 43 57 16 4 

18-5985 37 23 32 34 

18-6350 5 7 18 11 

18-6408 43 19 8 21 

18-6620 5 19 8 56 

18-6770 41 31 24 27 

18-6844 37 39 14 11 

18-6980 44 29 16 60 

18-7010 44 19 8 21 

18-7140 19 59 42 11 

18-7272 5 49 6 11 

18-7325 41 7 40 11 

18-7330 17 23 36 4 

18-7700 43 31 48 54 

18-7705 44 3 32 10 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-7806 5 9 24 56 

18-8000 25 55 6 14 

18-8005 5 57 10 4 

18-8065 25 7 10 33 

18-8315 39 19 14 6 

18-8380 8 31 6 47 

18-8405 44 23 24 22 

18-8720 57 1 32 11 

18-8855 43 9 8 34 

18-8877 44 53 36 34 

18-9030 5 13 52 22 

18-9035 57 15 52 11 

18-9070 43 29 6 56 

18-9140 41 31 36 54 

18-9409 43 7 10 4 

18-9440 41 19 20 11 

18-9570 41 55 32 21 

18-9750 49 13 16 21 

See Table 3-1 for site indices; Table 3-2 for identification of GCM scenarios. 

 

GCM scenarios for the analysis of changes in the 90th percentile 24-hour precipitation event were 

screened on the basis of percentage of events greater than the historic 90th percentile event.  The 

selected bounding scenarios are summarized in Table 3-5 (for ca. 2055 conditions based on 2040-2069 

GCM output) and in Table 3-6 (for ca. 2085 conditions based on 2070-2099 GCM output).  Identities of 

the GCM scenarios are shown in Table 3-2.   

For the 90th percentile event, the low-end (10th percentile of increases) is associated with the lower 

greenhouse gas forcing scenario (RCP 4.5) 71 percent of the time, while the high-end (90th percentile) is 

associated with the higher greenhouse gas forcing scenario (RCP 8.5) 68 percent of the time for ca. 2056 

conditions across Maryland.  For ca. 2085 predictions, the results are 82 and 94 percent, respectively.   
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Table 3-5.  Bounding Scenarios for Analysis of the 90th Percentile 24-hour Precipitation Event, ca. 2056 

Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-0015 49 35 4 48 

18-0185 14 9 28 15 

18-0193 29 9 12 15 

18-0335 45 21 32 56 

18-0465 29 55 40 52 

18-0470 14 23 10 48 

18-0700 33 19 56 22 

18-0705 33 55 10 16 

18-0732 13 59 20 38 

18-0915 9 31 24 22 

18-1032 59 41 12 36 

18-1125 26 5 20 38 

18-1385 6 7 10 39 

18-1530 8 31 18 56 

18-1627 17 1 30 34 

18-1710 7 3 46 21 

18-1750 29 7 6 39 

18-1790 13 7 32 21 

18-1862 50 19 2 21 

18-1890 8 19 32 11 

18-1980 45 9 18 40 

18-1995 26 51 18 48 

18-2060 55 33 30 19 

18-2215 60 15 34 54 

18-2282 29 13 14 48 

18-2325 45 1 20 22 

18-2523 45 31 46 48 

18-2700 59 7 38 22 

18-2770 45 13 20 38 

18-2860 17 51 4 22 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-2905 49 25 48 28 

18-2906 49 25 46 18 

18-3230 29 59 4 56 

18-3348 57 29 22 40 

18-3355 26 59 10 21 

18-3415 57 19 10 21 

18-3675 7 53 2 10 

18-3795 29 45 12 52 

18-3855 35 3 2 47 

18-3975 57 41 10 28 

18-4030 23 39 2 56 

18-4780 23 41 2 40 

18-5080 7 9 28 56 

18-5111 49 19 2 21 

18-5201 17 29 24 39 

18-5865 14 25 18 38 

18-5894 17 3 10 27 

18-5985 50 1 32 46 

18-6350 26 1 4 15 

18-6408 8 45 10 60 

18-6620 50 37 4 27 

18-6770 33 55 46 39 

18-6844 33 5 18 27 

18-6980 7 43 18 40 

18-7010 26 41 14 27 

18-7140 19 59 32 54 

18-7272 14 57 2 38 

18-7325 43 37 18 22 

18-7330 9 1 52 56 

18-7700 29 3 6 39 

18-7705 44 59 24 36 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-7806 49 9 30 21 

18-8000 45 17 8 28 

18-8005 29 17 24 56 

18-8065 43 37 22 18 

18-8315 51 39 36 60 

18-8380 19 3 4 34 

18-8405 57 1 10 36 

18-8720 50 55 18 15 

18-8855 45 33 2 36 

18-8877 33 3 4 36 

18-9030 59 9 12 21 

18-9035 33 1 46 22 

18-9070 54 37 44 38 

18-9140 17 51 28 21 

18-9409 5 23 40 32 

18-9440 50 43 48 28 

18-9570 26 41 18 40 

18-9750 8 51 48 56 

See Table 3-1 for site indices; Table 3-2 for identification of GCM scenarios. 
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Table 3-6.  Bounding Scenarios for Analysis of the 90th Percentile 24-hour Precipitation Event, ca. 2085 

Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-0015 17 33 52 16 

18-0185 17 55 2 42 

18-0193 19 33 2 56 

18-0335 9 13 32 12 

18-0465 57 47 24 12 

18-0470 14 19 52 36 

18-0700 13 23 60 58 

18-0705 17 23 36 12 

18-0732 17 53 52 16 

18-0915 5 33 52 42 

18-1032 43 19 2 15 

18-1125 57 31 36 18 

18-1385 5 33 2 54 

18-1530 19 23 10 48 

18-1627 5 11 36 12 

18-1710 19 55 18 54 

18-1750 5 33 18 12 

18-1790 14 53 18 12 

18-1862 8 23 2 22 

18-1890 19 7 42 22 

18-1980 25 23 58 22 

18-1995 13 5 28 56 

18-2060 17 19 6 28 

18-2215 60 39 18 46 

18-2282 29 53 42 28 

18-2325 49 9 52 54 

18-2523 25 29 36 16 

18-2700 25 11 58 4 

18-2770 29 55 6 46 

18-2860 47 33 24 3 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-2905 19 7 18 56 

18-2906 19 31 58 12 

18-3230 43 39 24 42 

18-3348 43 35 18 22 

18-3355 26 31 18 54 

18-3415 7 35 16 6 

18-3675 14 29 6 16 

18-3795 7 59 60 22 

18-3855 25 27 2 34 

18-3975 31 9 18 12 

18-4030 39 53 28 52 

18-4780 59 39 6 40 

18-5080 17 23 32 12 

18-5111 13 9 12 40 

18-5201 7 5 18 56 

18-5865 17 31 18 54 

18-5894 7 1 40 54 

18-5985 25 27 10 56 

18-6350 25 5 18 21 

18-6408 19 37 40 6 

18-6620 7 9 30 16 

18-6770 17 29 18 16 

18-6844 59 33 24 12 

18-6980 47 33 2 22 

18-7010 29 23 42 34 

18-7140 26 51 4 46 

18-7272 57 37 12 15 

18-7325 17 51 36 16 

18-7330 44 13 32 46 

18-7700 8 23 2 22 

18-7705 13 33 24 48 
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Site 10th Percentile RCP4.5 Median RCP8.5 Median 90th percentile 

18-7806 25 11 10 4 

18-8000 31 15 18 48 

18-8005 9 15 18 34 

18-8065 29 37 58 4 

18-8315 26 13 30 4 

18-8380 25 1 4 45 

18-8405 59 31 28 34 

18-8720 43 23 58 16 

18-8855 59 13 6 54 

18-8877 5 39 6 4 

18-9030 25 29 54 56 

18-9035 26 29 60 16 

18-9070 25 9 36 12 

18-9140 30 47 12 56 

18-9409 7 53 36 46 

18-9440 26 23 10 16 

18-9570 19 23 6 40 

18-9750 8 47 52 54 

See Table 3-1 for site indices; Table 3-2 for identification of GCM scenarios. 
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4.0 RESULTS – EXTREME PRECIPITATION 

The methods described in Section 2.1 were applied to the four GCMs selected for each of two future time 

periods and the historic time period at the 79 Maryland Atlas 14 stations (Section 3.0).  Results are 

provided electronically in two databases, one for the IDF analysis and one for the peaks-over-threshold 

analysis of the 90th percentile 24-hour event.  The two databases (IDF-db.xlsx and 90th%le-db.xlsx) are 

provided in Microsoft Excel™ format.  Each database contains three tabs.   

The results of the analyses are contained on the IDFdb tab.  For each station, time horizon, and GCM 

combination, the IDFdb tab in the 90th%le-db.xlsx database provides a single result (the estimated 24-

hour 90th percentile event).  The IDFdb tab in the IDF-db.xlsx database provides, for each station, time 

horizon, and GCM combination, sets of 10 durations (5-minute to 24-hour) for 10 difference recurrence 

intervals. 

To aid the user in exploring the databases, each contains a Graph tab for visualization.  On this tab, the 

user can select a station from a drop-down list.  For the IDF-db, the user can also select a recurrence 

interval.  The workbook will then retrieve the requested data and display it in both tabular and graphical 

form (see examples below). 

Results of the IDF analysis suggest a widespread risk of increase under future conditions in Maryland for 

the intensity of extreme precipitation events of a given duration and recurrence.  However, this increase is 

not consistent among GCM scenarios downscaled by LOCA.  At many stations, the future results suggest 

more of an increase in the cone of uncertainty than a unimodal increase in intensity – implying a risk of 

more intense events, but not always a consensus.  For some GCM simulations the predicted intensity of 

low recurrence events decreases, presumably due to drier conditions predicted during the convective 

storm season.  The method also assumes that relative bias between historical LOCA-downscaled GCM 

performance and observed data will be retained into the future – which in some cases where the fit to 

historic conditions is poor can lead to extreme future predictions that may not be physically realistic.  It 

does appear that LOCA fails to provide a strong match to the distribution of historic high precipitation 

events, especially for stations near the land-water interface, even though the developers claim that 

“LOCA produces better estimates of extreme days” (Pierce et al., 2014).  A newly released pre-print of 

Wang et al. (2020) appears to show that LOCA tends to under-estimate the magnitude of extreme 

precipitation events due to the way in which the historic training data set was constructed. 

We also noted that the selection of GCMs that have higher or lower total annual precipitation volume 

often does not guarantee a similar alteration in the intensity of low-recurrence storm events.  This could 

be associated with GCMs that predict a higher frequency of moderate intensity events and/or a seasonal 

shift away from the convective storm season. 

A careful look at the results reveals instances where projected results for a given GCM do not increase 

monotonically across recurrence interval – especially for events with greater than 100-yr recurrence 

intervals.  These anomalies occur due to the statistical nature of the analysis and the last step of the 

analysis in which the projected results are renormalized against the published IDF curve ordinates.  This 

can result in some crossing behavior if the shape of the relationship between intensity and recurrence 

interval for a given duration is substantially different between historical AMS data and the GCM output 

and is exacerbated where results are extrapolated beyond the 30-yr time window for future climate output 

(e.g., predicting change in a 500-year event from statistical fit to a 30-year sample).  These small 
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discrepancies should not interfere with the intended use of the results to investigate the potential range of 

risk for which adaptation may be required under further climate. 

The predicted intensity of the 90th percentile 24-hour event does not show a consistent increase at most 

stations under future conditions.  This is in line with studies that suggest total annual precipitation volume 

will most likely increase under future climate, but that much of this increase will be associated with more 

extreme, low-recurrence events (Easterling et al., 2017).  The 90th percentile results thus appear to be 

“good news” as they suggest that many water quality BMPs that are optimized to capture and treat 

pollutants associated with sub-yearly recurrence events are likely to continue to provide expected 

services under future climate. 

Representative figures from the reporting databases are shown in Figure 4-1 through Figure 4-3. 

 

Figure 4-1.  Projected 25-year IDF Curves for Baltimore WSO Airport ca. 2055 

1-hr 2-hr 3-hr 6-hr 12-hr 24-hr

Historic - Atlas14 2.46 3.00 3.27 4.05 5.06 6.08

2055-10th - MIROC-ESM_rcp45 1.80 2.23 2.43 3.06 3.78 4.51

2055-RCP4.5-50th - EC-EARTH_rcp45 2.58 3.16 3.44 4.26 5.35 6.46

2055-RCP8.5-50th - ACCESS1-3_rcp85 2.97 3.65 3.99 4.94 6.28 7.66

2055-90th - GFDL-ESM2M_rcp85 2.51 3.06 3.34 4.13 5.17 6.22
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Figure 4-2.  Projected 25-year IDF Curves for Baltimore WSO Airport ca. 2085 

1-hr 2-hr 3-hr 6-hr 12-hr 24-hr

Historic - Atlas14 2.46 3.00 3.27 4.05 5.06 6.08

2085-10th - CMCC-CMS_rcp45 2.66 3.24 3.54 4.37 5.49 6.63

2085-RCP4.5-50th - GFDL-ESM2M_rcp45 2.60 3.18 3.47 4.30 5.41 6.53

2085-RCP8.5-50th - MIROC5_rcp85 2.70 3.31 3.62 4.49 5.69 6.90

2085-90th - GISS-E2-H_rcp85 3.55 4.43 4.87 6.07 7.94 9.90
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Figure 4-3.  Projected Results for 90th Percentile 24-hour Precipitation Event, Aberdeen-Phillips Field 

For analysis of the 90th percentile 24 hr event, the 10th percentile (low), median, 

and 90th percentile (high)  GCM categories are based on relative projected change 

in total precipitation volume above the historical 90th-percentile 24-hr event.  This

approach does not guarantee that the change in magnitude of the estimated

90th-percentile 24-hr events will scale in the same order as the low, median, and

high impact GCMs as the change in volume may be focused in more extreme,

low-recurrence events; however, it does ensure that the selected GCMs span a

range of different projected characteristics for future climate conditions.

Future climate projections are based on 30-year periods centered at 2055 and 2085.
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5.0 RESULTS – EVENT RUNOFF AND BMP SIMULATIONS 

The SWMM simulations are performed at all 79 Atlas 14 stations in Maryland.  Each station is evaluated 

for two future periods centered at 2055 and 2085).  For each time period, results are generated for four 

GCMs representing the 10th, median RCP 4.5, median RCP 8.5, and 90th percentile in terms of predicted 

change in future total precipitation volume.  Simulations are run for the 1, 2, 10, and 100-yr 24-hour storm 

events, plus the 90th percentile 24-hour event.  The two BMPs are simulated with three levels of 

imperviousness (25%, 50%, and 80%).  This provides a database of 20,574 simulations. 

Because of the large number of runs completed, results are provided in four separate electronic 

databases: 

• SWMM_BIORETENTION_IDF_OUTPUT_SUMMARY.xlsx 

• SWMM_BIORETENTION_POT_OUTPUT_SUMMARY.xlsx 

• SWMM_WETPOND_IDF_OUTPUT_SUMMARY.xlsx 

• SWMM_WETPOND_POT_OUTPUT_SUMMARY.xlsx 

Within each database, the first tab provides the raw results from each individual simulation.  These are 

results for a 48-hour simulation (with storm event on the first day) for a drainage area (nominal 1 acre for 

bioretention and 25-acre for extended wet detention).  Results are generated as total runoff in cubic feet 

(per two days) with peak flow in cfs.  The second tab contains summaries of the first tab at varying levels 

of aggregation. 

 

5.1 RUNOFF  

SWMM5 simulated runoff prior to entering the BMP is equivalent to the unmanaged runoff from the site 

and can be used to build intensity-frequency relationships for future runoff events.  The frequency is the 

same as the frequency of the underlying rain event.  Summary results for the 1-acre bioretention 

simulation produce estimates of peak flow as cfs/ac as well as estimates for total storm flow.  Results for 

peak flow (averaged across all sites) are shown in Figure 5-1, separated by recurrence interval and 

impervious percentage.  By the end of the century, peak runoff rates are predicted to increase, on 

average, about 13 – 14 percent, with slightly higher increases for longer recurrence intervals and lower 

impervious percentages. 
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Figure 5-1.  Historic and Future Peak Flow Averages by Recurrence 

5.2 BIORETENTION BMP 

Raw output for the bioretention simulations is displayed in the following format.  Columns A through I 

provide the run identification information, such as the following: 

SWMM Output------------------------------------------------------------------------------------------------------------------------------------------ 

StationName StationID Year GCM_RCP BMP_Type ANALYSIS_Type WQ_Depth EVENT_Type P_IMPERV 

ABERDEEN PHILLIPS FLD, MD 18-0015 Historic Atlas14 Bioretention IDF 2.67 1-yr 24-hr 25 

 

Here, “Year” can be Historic, 2055, or 2085 and “GCM_RCP” can be either Atlas 14 or the name of a 

future climate GCM.  “ANALYSIS_Type” is either IDF or POT, where POT represents the 90th percentile 

analysis.  “WQ_Depth” is the design requirement water quality depth in inches, and “P_Imper” is 

impervious percentage.  The other variables are self-explanatory. 

Columns J through M provide the SWMM hydraulic output.  The volumes are totals over the 48-hour 

simulation period: 

PeakFlow_cfs Overflow_cf Underdrain_outflow_cf TotalOutflow 

2.10 3,792 1,820 5,612 
 

Finally, columns O through R summarize the change relative to Atlas 14 (historic) design conditions: 

Change -------------------------------------------- 

PeakFlow_cfs% Overflow_cf% Underdrain_outflow_cf% TotalOutflow% 

12.05% 16.65% 3.77% 12.47% 
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Bioretention cells are designed to provide water quality treatment for the 90th percentile 24-hour rainfall 

event.  We noted in Section 4.0 that the 90th percentile event under future climate conditions was 

frequently predicted to be smaller than historic, with overall increases in total precipitation volume 

concentrated in more extreme events.  This is borne out in the analysis of bioretention response to this 

event (the “POT” database).  Taking the average of the median change across all sites, the peak flow and 

total outflow decline by -17 and -18%, respectively, for 2055, and by -11 and -12% for 2085 (Table 5-1.  

On average, bioretention produces no bypass overflow under historic or future conditions for the 90th-

percentile event.  There is, however, a wide range in predicted responses between sites and an even 

larger range between individual site and climate scenario combinations.  

 

Table 5-1.  Summary of Response of Bioretention to 90th-percentile Event 

Average of median change across all sites 

 Peak Flow (cfs) Overflow (ft3) Underdrain (ft3) Total Outflow (ft3) 

2055 -17.26% 0% -18.02% -18.02% 

2085 -11.33% 0% -11.93% -11.93% 

Range of median change over sites 

2055 -57.10% to 12.29% 0% -58.57% to 18.91% -58.57% to 18.91% 

2085 -50.48% to 13.56% 0% -51.49% to 15.56% -51.49% to 15.56% 

Range over all individual scenarios 

2055 -75.69% to 392.4% 0% to 21.44% -79.00% to 87.80% -79.00% to 101.8% 

2085 -73.35% to 1724% 0% to 82.41% -76.29% to 110.5% -76.29% to 141.7% 

Median change versus impervious % 

I=25 -17.72% 0% -21.42% -21.42% 

I=50 -15.14% 0% -16.32% -16.32% 

I=80 -12.05% 0% -12.51% -12.51% 
 

Bioretention is not designed to fully treat larger low-recurrence events with longer return periods.  

Averaging over the medians of all sites and future scenarios (incorporating 1-year through 100-year 24-

hour events) the peak flow, bypass (overflow), and total outflow increase by 8, 11, and 7%, respectively 

for 2055 and by 16, 21, and 14% by 2085. 
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Table 5-2.  Summary of Responses of Bioretention to Future 1-year through 100-year Events  

Average of median change across all sites 

 Peak Flow (cfs) Overflow (ft3) Underdrain (ft3) Total Outflow (ft3) 

2055 8.43% 11.13% 1.73% 7.30% 

2085 15.71% 20.76% 2.97% 13.54% 

Range of median change over sites 

2055 -1.29% to 22.31% -1.44% to 29.56% -0.20% to 4.24% -1.23% to 20.65% 

2085 2.31% to 34.65% 3.58% to 42.29% 0.44% to 6.45% 1.96% to 27.30% 

Range over all individual scenarios 

2055 -48.28% to 201.0% -58.59% to 264.7% -10.72% to 12.68% -48.35% to 228.6% 

2085 -43.36% to 139.4% -52.48% to 173.8% -10.66% to 12.02% -44.96% to 151.1% 

Median change versus impervious % 

I=25 10.51% 12.75% 2.21% 10.13% 

I=50 11.15% 15.33% 2.23% 9.73% 

I=80 12.87% 18.87% 2.32% 9.46% 
 

The bioretention results for outflows by different pathways for all scenarios in all areas of Maryland are 

summarized graphically in Figure 5-2 and Figure 5-3.  The left side of these figures shows the low-range 

responses (based on the 90th-percentile event simulations) while the right side shows the high-range 

responses (based on the IDF simulations) at varying levels of imperviousness.  Results for the 25% 

impervious case look somewhat anomalous because the Simple Method sizing rule tends to undersize 

bioretention when imperviousness is low.  For larger, low-recurrence events, the bioretention response 

becomes approximately linear. 
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Figure 5-2.  Bioretention Simulation Results for Peak Outflow as a Function of Total Storm Depth 

Note: Figures on left side show closeup of responses to higher frequency, lower volume peak events; figures on right side show 

responses to lower frequency extreme events. 
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Figure 5-3.  Bioretention Simulation Results for Overflow Volume as a Function of Total Storm Depth 

Note: Figures on left side show closeup of responses to higher frequency, lower volume peak events; figures on right side show 

responses to lower frequency extreme events. 

  

0

100

200

300

400

500

600

700

800

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

O
u

tf
lo

w
 V

o
lu

m
e 

(c
f)

Storm Depth (in)

Bioretention Overflow Volume at 25% imperv

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20

O
u

tf
lo

w
 V

o
lu

m
e 

(c
f)

Storm Depth (in)

Bioretention Overflow Volume at 25% imperv

0

10

20

30

40

50

60

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

O
u

tf
lo

w
 V

o
lu

m
e 

(c
f)

Storm Depth (in)

Bioretention Overflow Volume at 50% imperv

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20

O
u

tf
lo

w
 V

o
lu

m
e 

(c
f)

Storm Depth (in)

Bioretention Overflow Volume at 50% imperv

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

O
u

tf
lo

w
 V

o
lu

m
e 

(c
f)

Storm Depth (in)

Bioretention Overflow Volume at 80% imperv

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20

O
u

tf
lo

w
 V

o
lu

m
e 

(c
f)

Storm Depth (in)

Bioretention Overflow Volume at 80% imperv



IDF Project Report  September 2020 

r  47 

 

5.3 EXTENDED WET DETENTION BMP 

Raw output for the extended wet detention simulations is displayed a format similar to bioretention.  

Columns A through J provide the run identification information.  This differs from bioretention in adding 

the scenario rainfall (column H) and the channel protection volume stage for the design (column J). 

Columns K through M provide the SWMM hydraulic output.  “Site_peak_flow_cfs” is the instantaneous 

peak output from the BMP, including both the from the orifice and flow over the weir.  “Site_volume_cf” is 

the total outflow from the wet pond (in cubic feet) over the 48-hour simulation period.  For this BMP, 

“TotalOutflow” is the same as Site_volume_cf but is included for consistency with the bioretention output 

format. 

Site_peak_flow_cfs Site_volume_cf TotalOutflow 

30.952 147,229 147,229 
 

Finally, columns O and R summarize the change relative to Atlas 14 (historic) design conditions: 

PeakFlow_cfs% TotalOutflow% 

11.31% 12.17% 
 

As was noted for bioretention, the 90th percentile event under future climate conditions was frequently 

predicted to be smaller than historic, with overall increases in total precipitation volume concentrated in 

more extreme events.  Accordingly, the wet pond simulations also tend to show a decline in outflow for 

the 90th percentile event, but with substantial variability among scenarios (Table 5-3).  Peak flow is 

relatively insensitive to impervious percentage for the 90th-percentile event as releases from the pond are 

controlled by the orifice. 

Table 5-3.  Summary of Response of Extended Wet Detention to 90th-percentile Event 

Average of median change across all sites  

 Peak Flow Total Outflow 

2055 -5.97% -10.70% 

2085 -3.95% -7.06% 

Range of median change over sites  
2055 -20.74% to 5.36% -36.15% to 10.96% 

2085 -18.10% to 4.82% -31.83% to 9.35% 

Range over all individual scenarios  
2055 -30.13% to 33.88% -51.27% to 72.73% 

2085 -28.15% to 44.88% -48.82% to 111.09% 

Median change versus impervious %  
25 -6.81% -12.26% 

50 -5.09% -9.19% 

80 -3.94% -7.15% 
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For larger low recurrence events, averaging over the medians of all sites and future scenarios 

(incorporating 1-year through 100-year 24-hour events) the peak flow and total outflow increase by 22 

and 7%, respectively for 2055 and by 41 and 13% by 2085 for extended wet detention (Table 5-4). 

Table 5-4.  Summary of Responses of Extended Wet Detention to Future 1-year through 100-year Events  

Average of median change across all sites 

 Peak Flow Total Outflow 

2055 21.89% 6.89% 

2085 41.44% 12.81% 

Range of median change over sites 

2055 -1.84% to 58.99% -1.23% to 20.17% 

2085 6.21% to 108.62% 1.93% to 25.58% 

Range over all individual scenarios 

2055 -75.39% to 607.22% -48.65% to 232.77% 

 
2085 -70.79% to 778.38% -45.28% to 152.61% 

Median change versus impervious % 

25 28.15% 10.13% 

50 32.26% 9.20% 

80 27.08% 8.61% 
 

The extended wet detention basin results for all scenarios in all areas of Maryland are summarized 

graphically in Figure 5-4 and Figure 5-5.  The left side of these figures shows the low-range responses 

(based on the 90th-percentile event simulations) while the right side shows the high-range responses 

(based on the IDF simulations) at varying levels of imperviousness.  The separate lines in the peak flow 

responses reflect the differing design criteria in eastern and western Maryland. 
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Figure 5-4.  Extended Wet Detention Basin Simulation Results for Peak Outflow as a Function of Total 

Storm Depth 

Note: Figures on left side show closeup of responses to higher frequency, lower volume peak events; figures on right side show 

responses to lower frequency extreme events. 
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Figure 5-5.  Extended Wet Detention Simulation Results for Overflow Volume as a Function of Total 

Storm Depth 

Note: Figures on left side show closeup of responses to higher frequency, lower volume peak events; figures on right side show 

responses to lower frequency extreme events. 
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6.0 IMPLICATIONS FOR DESIGN 

This section builds upon the previous material to provide a quantitative evaluation of the potential impacts 

of changes in storm IDF relationships in three areas: channel stability, risk of road flooding, and the 

general performance efficiency of urban stormwater BMPs. 

6.1 CHANNEL STABILITY 

The structure of a stream channel adjusts over time as it attempts to reach an approximate equilibrium 

between flow energy and sediment supply.  If these inputs change, then the channel will also change.  

For example, in urbanizing areas where impervious surface increases, resulting in increased runoff and 

greater flow energy, channels often respond by first incising and then widening, losing connection with the 

floodplain, and generating large quantities of mobile sediment.  These changes result in degraded habitat 

and poor biology (Walsh et al., 2005). 

The morphologic response of stream channels is closely related to the effective discharge or channel-

forming flow (Wolman and Miller, 1960), which integrates the sediment-carrying capacity and probability 

of occurrence to evaluate the flow that, over time, transports the largest mass of sediment.  Effective 

discharge is closely related to bankfull discharge and is typically associated with flows that have a 

recurrence frequency of once in from one to two years (Simon, 2004).  One of the functions of urban 

BMPs is to limit erosive flows and maintain channel stability by retaining enough water to achieve a 

specified channel protection volume; in Maryland, this is based on a one-year 24-hour runoff event (MDE, 

2009).  Similarly, Palmer et al. (2005) state that ecologically successful stream restoration designs must 

be self-sustaining systems with the ability to maintain equilibrium despite changes; thus, restoration 

designs seek to ensure that the redesigned channel is consistent with expected channel-forming flows.   

Current practice for both BMP and restoration design typically relies on the historic record to estimate 

design flows.  If future climate brings more intense precipitation and runoff at recurrence intervals 

corresponding to channel-forming flows, then sediment transport capacity will increase and channel 

adjustments of incision or widening can be expected as the system attempts to reach a new equilibrium.  

Thus, changes in IDF relationships could threaten the resilience of stream restoration efforts, while BMPs 

to control runoff might not achieve channel protection goals. 

Changes in the one-year 24-hour (or 1.5-year 24-hour) flow give an indication of potential risks to stream 

channel resilience but are not a direct measure of stream stability.  On the other hand, a full analysis of 

stability is a site-specific exercise that needs to incorporate the geometry, slope, and external sediment 

supply to a stream reach in addition to the flow.  As a middle way, simplified semi-quantitative tools are 

useful to provide broad-scale screening of the potential effects of changes in IDF relationships on stream 

stability. 

The GeoTools package (Bledsoe et al., 2007; Raff et al., 2007) is designed to aid in the estimation of 

erosion potential and associated risk indices.  The use of these methods is demonstrated in Bledsoe and 

Watson (2001) and Bledsoe (2002), among others.   

The GeoTools effective discharge analysis provides two summary measures of channel stability.  
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• The Mobility Index (MI) is defined as 𝑀𝐼 = 𝑆 √
𝑄

𝑑50
, where Q is discharge (m3/s), S is slope 

(dimensionless), and d50 is the median grain size (m [mm x 10-3]; Chang, 1985; Bledsoe and 

Watson, 2001).  MI was developed in part as a measure of channel form and stability in cases 

where channel width data are unavailable. 

• Specific Stream Power (ω) is defined as 𝜔 =  
Ω

𝑤
=  

𝛾𝑚 𝑄 𝑆

𝑤
, where Ω is total stream power, γm is 

the specific weight of the water and sediment mixture (kg), and w is the channel width (m).  This 

measure has also been used as an index of channel form and response (Bledsoe and Watson, 

2001). 

Section 4.0 developed estimates of precipitation IDF relationships under future climate in Maryland, while 

Section 5.1 provided SWMM5-predicted runoff associated with future precipitation events of specified 

recurrence and duration.  The runoff simulations use a unit-area representation of a generic urban 

landscape at varying levels of effective imperviousness.  Because channel width is not explicitly specified 

for each location, analysis with MI is more useful than ω for evaluating potential changes in stream 

stability. 

Bledsoe and Watson (2001) used MI to develop logistic regressions to predict whether a stream channel 

was stable (meandering) or unstable (incising).  Their model #45, which uses the base-10 logarithm of MI 

and defines MI based on annual (1-year recurrence) 24-hour flow magnitude rather than bankfull flow, 

classified stable meandering and incising channels with sand beds with over 95% accuracy over a 

sample of 77 well-studied streams.  The resulting logistic model of the probability of incision (p) is: 

𝑝 =  
𝑒𝑥𝑝(𝛽0 +  𝛽1 𝑋)

1 +  𝑒𝑥𝑝(𝛽0 +  𝛽1 𝑋)
 ,  

𝛽0 = 7.89, 𝛽1 = 22.11, 

𝑋 =  𝑙𝑜𝑔10 𝑀𝐼 =  𝑙𝑜𝑔10 (𝑆 √[
𝑄1−𝑦𝑟

𝑑50
⁄ ]) 

The logistic model results in an S-shaped curve.  As MI approaches 0, p also asymptotes toward zero; as 

MI approaches 1, p asymptotes towards 1.  The rate of change of p relative to MI is steepest in the middle 

of the range, where a small change in MI can result in a large change in p.  A similar type of relationship 

is expected for Maryland streams, although the regression coefficients may differ, and an equation of this 

form is useful for exploring relative risk of stream instability due to climate change. 

To apply the logistic model to the IDF analysis, we use for Q the peak runoff response to the 1-year 

precipitation event on a 1-acre drainage area predicted by the SWMM model (bioretention setup without 

presence of BMP).  We use the 1-acre peak rather than daily average flow for comparative purposes 

because it is the shear stress associated with the peak flow rate that determines sediment mobility during 

the event; however, it is evident that the analysis of real streams with multiple contributing areas is much 

more complex.  

Note that Q scales with the drainage area with an approximately linear response until significant 

variations in time of concentration manifest and MI thus scales approximately as the square root of the 

drainage area.  This indicates that as area and/or Q increases then either S must decrease or √d50 must 

increase by a proportional amount to maintain the same probability of channel stability.  Results are 

presented here on a 1-acre basis to explore the potential relative changes in stability under future climate. 
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The logistic model probability representation is a function of S/√d50.  Setting p = 0.5 defines the point of 

transition from likely stable to likely incising conditions (for sand-bed streams).  This occurs when 

𝑆

√𝑑50

=
10

−𝛽0
𝛽1

⁄

√𝑄
 

The resulting transition frontier is shown in Figure 6-1.  As Q increases above the transition curve the 

predicted probability of incision increases above 50%. 

 

Figure 6-1.  Stability Transition Frontier for Sand Bed Stream with 1-acre Drainage 

The probability of instability increases with longer recurrence frequency and increased imperviousness, 

both of which increase peak runoff.  We explore results without BMPs (also applicable to stream 

restoration design), with runoff control by bioretention cells, and with extended wet detention basins.  

Figure 6-2, showing results without BMPs, compares predicted MI for runoff from 1 acre at 25% and 80% 

imperviousness (average across all sites, with S/√d50 = 1.75, where p = 50% corresponds to MI = 0.443.)  

Each chart shows nine lines, representing historic conditions, the four selected GCMs for ca. 2055 

conditions, and the four selected GCMs for ca. 2085 conditions,  S/√d50 = 1.75 is taken as an example of 

a headwater stream or drainage channel at conditions near the stability limit, corresponding to, for 

instance, a channel with a slope of 1.5% and a d50 of 0.073 mm or a slope of 2.77% and a d50 of 0.25 

mm.  Most future climate scenarios show an increase in MI that grows larger at longer return intervals. 
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Figure 6-2.  Average Mobility Index for 25% (left) and 80% (right) Impervious Cover 1-acre Parcel, S/√d50
 

= 1.75 m-0.5 

For the logistic regression of Bledsoe and Watson, the 1-year 24-hr event flow results provide the 

prediction of potential channel instability.  Maintaining the ratio of S/√d50 = 1.75 m-0.5 (other ratios provide 

similar, but shifted results), simulation of the probability of instability based on the 1-year recurrence peak 

runoff calculated using SWMM from historic and potential future IDF curves yields the average results 

across all 79 Maryland Atlas 14 stations at 25% imperviousness shown in Figure 6-3 and summarized (for 

three levels of imperviousness) on the left side of Table 6-1.  These probabilities increase with both 

percent imperviousness and time into the future, with only historic climate conditions at 25% 

imperviousness falling below the 50% target for these site conditions.   

 

Figure 6-3.  Predicted Probability of Channel Instability at 25% Imperviousness for Runoff from a 1 Acre 

Site with S/√d50 = 1.75 using the Logistic Regression of Bledsoe and Watson (2001) 
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Table 6-1.  Probability of Channel Instability for Runoff from 1 Acre with S/√d50 = 1.75, with and without 

Bioretention BMPs 

 
No BMP Bioretention 

Imperviousness 25% 50% 80% 25% 50% 80% 

Historic 38.73% 71.59% 86.79% 34.39% 49.41% 44.78% 

2055 50.01% 78.76% 90.21% 45.57% 64.51% 63.32% 

2085 56.16% 82.06% 91.73% 52.04% 71.72% 71.76% 

Note: Results are averages across 79 sites.  Results for 2055 and 2085 are averaged across four GCMs for each site. 

The right side of Table 6-1 shows the results for the same conditions but with treatment of runoff by 

bioretention cells designed to current Maryland standards.  Bioretention cell sizing varies with Simple 

method predictions of runoff amount, which suppresses variability across percent imperviousness.  For 

historic climate, the probability of incision is less than 50% for all three levels of imperviousness (which 

appears to corroborate the design standards); however, the probability of instability increases under 

predicted future climate conditions. 

Channels with lower values of S/√d50 (e.g., with a lower slope or larger particle size) will have lower 

predicted risk of instability.  Results for an individual site are sensitive to the value of S/√d50, although the 

pattern remains the same (Table 6-2).  For a fine sand bed with d50 = 0.25 mm, the S/√d50 range 

corresponds to slopes from 1.58% to 3.16%. 

Table 6-2.  Probability of Channel Instability for Runoff from 1 Acre Parcel with Alternative S/√d50 at 80% 

Imperviousness 

 
No BMP Bioretention 

S/√d50 1.0 1.5 1.75 2.0 1.0 1.5 1.75 2.0 

Historic 2.96% 59.92% 86.79% 95.95% 0.37% 15.58% 44.78% 74.51% 

2055 4.13% 67.75% 90.21% 97.08% 0.82% 28.53% 63.32% 86.03% 

2085 4.96% 71.69% 91.73% 97.56% 1.24% 37.34% 71.76% 90.02% 

 

Results shown above represent averages across 79 sites for which there are varying predictions of 

change in the 1-year 24-hour flow.  Results for individual sites are highly variable, reflecting genuine 

geographic variations, statistical, and potential anomalies in the LOCA downscaling process, as well as 

the effective impervious area of the drainage. 

Figure 6-4 gives an illustration of the spread among individual results in the form of a histogram versus 

probability bins for predicted instability (again using S/√d50 = 1.75 as an example).  All time periods have 

examples that span most of the possible probability range; however, the future time periods predict a 

reduction in low probability categories and an increase in high probability categories.  The shift associated 

with future climate is more clearly seen in a histogram that shows the percentage of cases that are 

greater than a given level of probability (Figure 6-5). 
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Figure 6-4.  Histogram of Individual Station/GCM/Imperviousness for Probability of Channel Instability 

with S/√d50 = 1.75, 1 Acre Drainage, and no BMP 

 

Figure 6-5.  Inverse Cumulative Distribution Function (Percentage Greater than Specified Level) of 

Individual Station/GCM/Imperviousness for Probability of Channel Instability with S/√d50 = 1.75, 1 Acre 

Drainage, and no BMP 

An extended wet detention pond is assumed to treat a larger drainage area than a bioretention cell and 

the SWMM simulations of flow through the pond use a contributing area of 25 acres, which results in 

higher runoff volume.  Accordingly, the value of S/√d50 must shift to a lower value to maintain stability.  To 

provide comparability with the bioretention example we scale the ratio by the square root of the drainage 

area.  Dividing the previous example value of this ratio of 1.75 by √25 yields S/√d50
 = 0.35, which results 

in an MI diagram similar to that shown above in Figure 6-2.  For example, a ratio of 0.35 might 

correspond to a slope of 0.55% at a d50 of 0.25 mm. 
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Figure 6-6.  Average Mobility Index for 25% (left) and 80% (right) Impervious Cover, 25-acre Parcel, 

S/√d50
 = 0.35 m-0.5 

The wet detention pond is designed to provide protection to the channel through the 10-year event, with a 

margin of safety.  It is thus not surprising that the MI remains low for the 1-year event at S/√d50
 =  

0.35 m-0.5 or even when S/√d50 is increased to 1.0 due to a higher slope or decreased median particle size 

(Figure 6-7).  Estimated average probability of instability is summarized in Table 6-3. 

  

Figure 6-7.  Average Mobility Index for 80% Impervious Cover, 25-acre Parcel, S/√d50
 = 0.35 m-0.5 (left) 

and S/√d50
 = 1.0 m-0.5 (right) 
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Table 6-3.  Probability of Channel Instability for Runoff from 25-Acre Parcel based on 1-yr 24-hr Event 

with Alternative Values of S/√d50 

 
No BMP Wet Detention Pond 

S/√d50 0.35 1.0 0.35 1.0 

25% Impervious 

Historic 4.38% 99.91% 0.00% 2.53% 

2055 6.76% 99.99% 0.00% 18.48% 

2085 8.58% 100.00% 0.00% 37.73% 

50% Impervious 

Historic 31.05% 99.99% 0.00% 2.94% 

2055 40.55% 99.99% 0.00% 26.53% 

2085 46.16% 100.00% 0.01% 51.59% 

80% Impervious 

Historic 66.58% 100.00% 0.00% 2.91% 

2055 74.64% 100.00% 0.00% 38.42% 

2085 78.46% 100.00% 0.02% 69.33% 

 

The analyses presented in this section indicate that relatively small increases in the magnitude of the 

runoff associated with the 1-year 24-hour storm event could result in a strong increase in the risk of 

channel instability.  This implies that BMPs and restoration designs may not function as intended to 

protect stream channels if the intensity and frequency of large storm events continues to increase.  

However, the geomorphic impact on individual stream reaches will vary according to site-specific 

characteristics and cannot be predicted through a generic analysis, although MI curves and estimates of 

stability risk similar to those presented above could be developed for a specific site using GeoTools 

(Bledsoe et al., 2007).  How predictions of increased risk should be addressed also depends on other 

factors, such as the useful lifespan of a design and the ability of the stream to adjust to changes as 

discussed further in Section 7.0. 

6.2 ROADWAY FLOODING RISK 

Roadway flooding is an important public safety concern associated with changing rainfall patterns.  In 

many cases, road overtopping occurs when culvert capacity is exceeded.  Overloaded culverts can also 

result in increased exit velocities that affect stream stability.  By definition, culverts are structures that 

have low flexibility: once installed they are difficult and expensive to replace.  It is therefore important to 

include a margin of safety in culvert design, which should attempt to account for potential changes in 

runoff over the design life. 

The Maryland Department of Transportation, State Highway Administration (MDOT-SHA) provides 

guidelines for culvert design (MDOT-SHA, 2009) and refers to the Federal Highway Administration HDS 5 

(FHWA, 2012) for hydraulic calculations.  MDOT-SHA (2009) establishes different levels of service 

depending on road type.  Culverts are designed for various storm recurrences, ranging from the 10-year 
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storm (peak runoff) for local streets to the 100-year storm for expressways; however, the performance of 

all regulated culverts must also be examined for the 100-year flood.  The Froude number, for which a 

value of 1.0 would represent the point of conversion from sub-critical to critical turbulent flow at the outlet, 

must not exceed 0.9 or the pre-existing Froude number, whichever is higher, as a result of the 100-year 

storm.  Culverts are to have a minimum diameter of 18”; 24” if the length is over 60 feet. 

MDOT-SHA (2009) is not very clear on the target freeboard to be maintained between the headwater 

elevation and the road surface, but references HDS 5, which calls for a freeboard of 2 feet at the design 

flow.  Calculation of flow through a culvert is complicated because culverts are generally a significant 

constriction to watercourse cross-sectional area and are subject to a range of gradually varied and rapidly 

varied flow types influenced by geometric characteristics of the culvert and those immediately upstream 

and downstream.  Further, culvert flow may be categorized as outflow controlled (in which the tailwater 

elevation has a significant influence) or inlet control ( in which the headwater depth at the culvert has the 

major influence).  Culvert design calculations must simultaneously address both possibilities, leading to 

complex calculations.  HDS 5 recommends the use of the Federal Highway Administration program HY8 

(http://www.fhwa.dot.gov/engineering/hydraulics/software/hy8/), based on Schall et al. (2012), for this 

purpose. 

For our analysis, we consider two designs for example.  One is for a minor arterial road (which is 

designed for the 50-year event) and one is for a local road (which is designed for the 10-year event).  The 

minor arterial representation is selected to match the Design Guideline 1 example given in FHWA (2012).  

The example 50-year storm peak (from a moderate sized [125-acre] watershed) is 200 cfs; the 10-year 

storm peak (from a smaller [75-acre] local watershed) is 24 cfs. 

Both examples assume a 1% culvert slope and use of a concrete round culvert with a non-projecting end, 

and both have an upstream invert elevation of 100 ft and road surface at a crest elevation of 110 ft.  The 

design must thus achieve a maximum headwater elevation of 108 ft or less after accounting for 2 feet of 

freeboard.  A headwater elevation just below 108 ft is obtained with a 4.5 ft diameter culvert for the minor 

arterial example and a diameter of 1.5 ft for the local road.  Figure 6-8 and Figure 6-9 show the full HY-8 

specifications for these designs. 
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Figure 6-8.  Minor Arterial Road Culvert, HY-8 Specifications 
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Figure 6-9.  Local Road Culvert HY-8 Specifications 
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The two culverts described above meet requirements based on historic climate.  We now examine 

performance under potential future climate.  Section 5.0 provides predictions of runoff from a unit area 

urban site (at various levels of imperviousness) both with and without BMPs under present and potential 

future climate regimes for 79 Maryland stations.  We report here on the 80% impervious simulations – 

using this extreme case for clarity of exposition.  Similar relationships would be found at lower levels of 

imperviousness because the imperviousness controls the peak runoff used for both current condition 

design and future condition predictions.   

To test culvert performance, it is necessary to convert the unit-area flows to actual flow amounts.  To do 

this, note that for the flows of interest (10-year recurrence and above) and high imperviousness, the 

runoff flow peak is a linear function of the 24-hour rainfall event (Figure 6-10).  This implies that it is 

reasonable to scale the unit-area runoff results to the magnitude of the event flows used in the culvert 

simulations.  (Note, this ignores dissipation of the flood peak relative to variable time of concentration 

across the contributing watershed, but the effect is expected to be small for a highly impervious area and 

errs on the side of conservatism.  We also assume that the n-year recurrence 24-hr flood event is 

synonymous with the runoff from the n-year recurrence 24-hr rainfall event, ignoring potential 

contributions from snowmelt.)   

 

Figure 6-10.  Relationship between Peak Flow from 1-acre (80% Impervious) and 24-hour Precipitation 

Depth 

We ran HY-8 at multiple flow levels ranging from 50% to 200% of the design flow (10-year for the local 

road culvert and 50-year flow for the arterial culvert).  Table 6-4 and Table 6-5 summarize the HY-8 

results. 
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Table 6-4.  HY-8 Results, Local Road Culvert 
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12.0 12.0 102.64 2.64 2.31 0.50 7.31 2.92 0 50% 

14.4 14.4 103.35 3.35 2.93 0.56 8.42 3.12 0 60% 

16.8 16.8 104.15 4.15 3.63 0.61 9.77 3.30 0 70% 

19.2 19.2 105.13 5.13 4.43 0.67 10.87 3.46 0 80% 

21.6 21.6 106.30 6.30 5.32 0.72 12.22 3.61 0 90% 

24.0 24.0 107.60 7.60 6.31 0.76 13.58 3.75 0 100% 

26.4 26.4 109.04 9.04 7.40 0.81 14.94 3.88 0 110% 

28.8 27.9 110.03 10.03 8.16 0.85 15.81 4.00 0.03 120% 

31.2 28.0 110.08 10.08 8.19 0.90 15.85 4.12 0.08 130% 

33.6 28.1 110.11 10.11 8.22 0.94 15.88 4.22 0.11 140% 

36.0 28.1 110.14 10.14 8.24 0.98 15.90 4.33 0.14 150% 

38.4 28.1 110.17 10.17 8.26 1.02 15.93 4.42 0.17 160% 

40.8 28.2 110.19 10.19 8.28 1.06 15.95 4.52 0.19 170% 

43.2 28.2 110.22 10.22 8.30 1.10 15.97 4.61 0.22 180% 

45.6 28.3 110.24 10.24 8.31 1.13 15.98 4.69 0.24 190% 

48.0 28.3 110.26 10.26 8.33 1.17 16.00 4.78 0.26 200% 
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Table 6-5.  HY-8 Results, Minor Arterial Culvert 
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100 100.00 104.29 4.29 2.11 1.60 12.66 5.81 0 50% 

120 120.00 104.86 4.86 2.92 1.79 13.20 6.17 0 60% 

140 140.00 105.49 5.49 4.29 1.97 13.69 6.49 0 70% 

160 160.00 106.20 6.21 5.11 2.13 14.14 6.77 0 80% 

180 180.00 107.01 7.01 6.00 2.30 14.54 7.03 0 90% 

200 200.00 107.90 7.90 6.97 2.45 14.89 7.27 0 100% 

220 220.00 108.88 8.88 8.01 2.60 15.10 7.49 0 110% 

240 240.00 109.94 9.94 9.11 2.75 15.45 7.69 0 120% 

260 244.98 110.22 10.22 9.43 2.88 15.73 7.88 0.22 130% 

280 247.53 110.36 10.36 9.58 3.02 15.88 8.06 0.36 140% 

300 249.67 110.48 10.48 9.71 3.15 16.00 8.23 0.48 150% 

320 251.57 110.59 10.59 9.83 3.28 16.11 8.38 0.59 160% 

340 253.33 110.69 10.69 9.94 3.40 16.21 8.54 0.69 170% 

360 254.97 110.78 10.78 10.04 3.53 16.31 8.68 0.78 180% 

380 256.52 110.87 10.87 10.14 3.65 16.40 8.82 0.87 190% 

400 257.99 110.96 10.96 10.23 3.76 16.48 8.95 0.96 200% 
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HY-8 predictions of headwater depth and outlet velocity as a function of discharge are exactly fit by two 

second-order polynomials of the form Y = β2 X2 + β1 X + β0, with a break at the elevation where the road 

is overtopped (Figure 6-11 and Table 6-6).  This allows prediction for any discharge within the polynomial 

fitting range (i.e., from 50% to 200% of the design flow).  

The bottom portion of Figure 6-11 shows how the outlet and tailwater velocities, which may impact 

downstream channel stability, increase with flow. 

  

  

Figure 6-11.  Relationship of Headwater Elevation and Outlet Velocity to Flow for Local Road (Left) and 

Minor Arterial (Right) Culvert Designs 
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Table 6-6.  Polynomial Coefficients for Relationship of Headwater Elevation and Outlet Velocity to Flow 

Design Range β2 (X2) β1 (X) β0 

Headwater Elevation 

Local Road 

Below Road 1.3496E-02 -0.0741 101.5943 

Above Road -2.4238E-04 0.0302 109.3666 

Minor Arterial 

Below Road 1.0610E-04 0.0042 102.8152 

Above Road -1.0268E-05 0.0120 107.8073 

Outlet Velocity 

Local Road 

Below Road 3.7781E-03 0.3856 2.1323 

Above Road -2.1833E-04 0.0265 15.2324 

Minor Arterial 

Below Road 

-4.4243E-05 0.0343 9.7418 

Above Road 

 

The polynomial relationships in Table 6-6 allow prediction of response to future runoff events of different 

recurrence frequencies (Figure 6-12 and Figure 6-13).  Results are averages for all 79 Atlas 14 stations.  

The historic simulations are based directly on Atlas 14 IDF results, while the future climate percentages 

summarize results from four different downscaled GCMs per station and time. 

 

Figure 6-12.  Predicted Frequency of Road Overtopping under Future Climate, Local Road Culvert 

Note: Design of local road culvert is based on the 10-year event. 
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Historic 0.00% 0.00% 100.00% 100.00% 100.00%

2055 0.00% 14.87% 86.08% 95.89% 97.78%

2085 0.63% 36.71% 89.24% 97.15% 98.42%
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Figure 6-13.  Predicted Frequency of Road Overtopping under Future Climate, Minor Arterial Culvert 

Note: Design of the minor arterial culvert is based on the 50-year event, 

As expected, the culverts do not result in road overtopping at their design storm recurrence under historic 

climate (10-year recurrence for the local road culvert and 50-year recurrence for the minor arterial 

culvert.)  The local road culvert results in road flooding at all stations for the 25-year event under historic 

climate, whereas the minor arterial culvert exceeds the target freeboard elevation (2 feet below the road 

surface) for the 100-year event but does not cause road flooding until flows are greater than the 100-year 

event. 

The predicted future climate results never reach 100% overtopping because they are based on a 

statistical analysis of multiple GCMs that includes some instances where future extreme flows are not 

predicted to increase.  The key result is the predicted future response to the design event for each 

culvert.  For the local road culvert designed for the 10-year event, the risk of road overtopping during such 

an event is nearly 15% by 2055 and 37% by 2085.  For the minor arterial culvert designed for the 50-year 

event, the risk of overtopping during such an event is 16% by 2055 and 30% by 2085. 

Per MDOT-SHA (2009), all culverts have a minimum service life of 50 years and a service life of at least 

75 years if the roadbed width is greater than 27 feet, so the results suggest that design criteria may need 

to be adjusted to account for future climate.  Results for individual sites will of course vary according to 

the local climate and the characteristics of specific culverts and roads. 

6.3 URBAN BMP PERFORMANCE 

Water quality BMPs are used to mitigate existing or prospective impacts of land-use change and other 

human activities on water quality.  BMPs are typically implemented through regulations and design 

guidance based on observations and assessment of existing problems (e.g., flooding, or bacterial 

impairment in a monitored waterbody) or on anticipation of potential problems based on experience with 

similar sites (e.g., expected impacts from new urban development).  These decisions generally assume 

that BMPs will function as observed under historical climate, weather, and hydrological conditions.  For 

instance, design requirements for water quality BMPs are typically based on achieving a level of control 
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for a design rainfall event with a given probability of occurrence, based on the past record of observed 

rainfall.  This approach assumes that the underlying statistical properties of historical climate (e.g., 

average and variability) will remain unchanged in the future.  From a statistical perspective, this is known 

as a stationary system.  If the underlying conditions change, then the assumptions built into design 

criteria may be inappropriate, and the performance of BMPs may be less protective of waterbodies than 

intended.   

Implicit assumptions about climate are built into guidance and regulations for both systems of BMPs and 

the design of individual BMP types.  We consider first how future climate may affect systems of BMPs and 

then discuss design guidance for individual BMPs.  Ultimately, it is the net effect of systems of BMPs that 

control impacts on water quality. 

Maryland Department of the Environment’s (MDE) 2000 Stormwater Design Manual presented 

calculations for a Water Quality volume (WQv) and a channel protection volume (CPv) for the design of 

stormwater BMPs.  With the 2009 revisions to the Design Manual, MDE moved to the more holistic 

approach of Environmental Site Design (ESD), which combines the WQv and CPv objectives to produce 

a unified approach to stormwater design and management based on the net effects of all stormwater 

controls present on a site (MDE, 2009, Chapter 5). 

6.3.1 BMP Systems: Environmental Site Design 

The general concept of ESD is to control runoff from a developed site in response to the 1-year 24-hour 

storm so that it is no greater than the runoff that would be expected for the same site with a cover of 

undeveloped woods in good condition, considering the distribution of hydrologic soil groups on the site.  

ESD does not require detailed simulation modeling of developed and undeveloped conditions.  Rather, it 

provides a simplified approach based on the relative change in Curve Number used in the National 

Resources Conservation Service TR-55 method (NRCS, 1986).  The difference in responses to the 1-yr 

24-hr event determines the excess runoff that needs to be treated (QE).  In units of depth, QE = PE x RV.  

RV is the surface runoff fraction, defined as RV = 0.005 + 0.009 x I, where I is the impervious fraction 

expressed as a percentage.  PE is then the excess rainfall amount that needs to be treated.  Rather than 

calculating PE simple lookup tables are provided (one for each of the four hydrologic soil groups, A, B, C, 

and D).  PE is listed in the table in increments of 0.2 inches and imperviousness in increments of 5% and 

incorporates a single assumption about the 1-yr 24-hr storm across all of Maryland, so the answer is not 

exact, but is sufficient to achieve the desired level of control on average, especially when weighted across 

multiple subareas of a site with differing soil and development characteristics. 

The approach of controlling site runoff to levels expected for woods in good condition is in theory climate 

neutral because both developed and woods runoff will change if climate changes.  However, the table 

that is used to determine PE is rooted in specific assumptions about the magnitude of the 1-yr 24-hr storm 

event that may not hold under future climate conditions. 

We investigated how climate change might affect design criteria by examining the changes in 

precipitation and the resulting difference in runoff between developed and good condition woods, as 

predicted by TR-55, under future climate scenarios for the 79 NOAA Atlas 14 stations for which we have 

developed estimates of the future 1-yr 24-hr event. 

The TR-55 method (NRCS, 1986) predicts runoff (Q, inches) via the curve number equation as  

𝑄 =  
(𝑃 − 0.2 𝑆)2

𝑃 + 0.8 𝑆
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where P is the 24-hr precipitation depth (inches) and S = 1000/CN – 10, where CN is the Curve Number.  

CN assumptions for ESD are shown in Table 2-1.  CNs for developed land were calculated as a weighted 

mixture of the CN for connected impervious area (98) and that for open space in good condition. 

Table 6-7.  Curve Numbers for Environmental Site Design Simulations 

Land Use Hydrologic Soil Group 

A B C D 

Woods, good 

condition 
38 55 70 77 

Developed, 25% 

Impervious 
54 70 80 85 

Developed, 50% 

Impervious 
69 80 86 89 

Developed, 80% 

Impervious 
86 91 93 94 

 

The runoff predicted by the CN method as well as the difference between runoff for developed land and 

good condition woods for a given hydrologic soil group and impervious percentage is an exact second-

order polynomial function of P, as shown in Figure 2-4.  This allows direct calculation of the implications 

of both spatial variability and magnitude of change in the 1-yr 24-hr event. 

 

Figure 6-14.  Curve Number Prediction of Runoff as a Function of Precipitation for Hydrologic Group D 

Soils, Developed Land at 80% Imperviousness 

Note: Polynomial equation represents the difference between runoff from developed land and runoff from woods in 
good condition. 
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The 1-yr 24-hr event is predicted to increase, on average, over the course of the 21st century.  The 

magnitude of the difference between runoff from developed land and woods in good condition (the 

theoretical QE) will also tend to increase, as shown for example in Table 6-8.  (The statistics are based on 

79 stations and four climate scenarios for each future time.)  This suggests a possible need to adjust ESD 

PE table in MDE (2009) in the future; however, the predicted changes in QE are small. 

Table 6-8.  Treatment Volume (QE, inches) for Historic and Predicted Future Climate for Hydrologic Group 

D Soils, Developed Land at 80% Imperviousness 

Time Minimum Maximum Average Median 

Historic 0.94 1.24 1.13 1.16 

2055 0.91 1.42 1.19 1.21 

2085 0.94 1.43 1.22 1.24 

Of more relevance than how the theoretical QE may change over time with runoff from both undisturbed 

woods and developed sites calculated under a non-stationary climate is how the predicted future excess 

runoff compares to the QE that would be calculated using the tables in MDE (2009).  This provides an 

indication of the extent to which existing ESD regulations may be sufficient to achieve the desired level of 

protection in the future.  These results are provided in Table 6-9 through Table 6-12.  In these tables a 

positive result means that the calculated treatment volume (the difference between runoff from developed 

land and good condition woods) is greater than the QE as calculated from the methods in Chapter 5 of 

MDE (2009) leading to a shortfall in treatment, while a negative result means that QE provides a margin 

relative to the site-specific target.  The “Percent Exceeding” column is the percentage of trials 

(combinations of GCMs and stations) where the site-specific need for volume control is greater than QE. 

Table 6-9.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site Design 

Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group A 

Time Minimum Maximum Average Median Percent 
Exceeding 

80% Impervious, QE =1.85 

Historic -0.94 -0.25 -0.51 -0.45 0.00% 

2055 -1.00 0.28 -0.36 -0.33 4.50% 

2085 -0.93 0.31 -0.28 -0.24 14.00% 

50% Impervious, QE =0.90 

Historic -0.63 -0.25 -0.40 -0.37 0.00% 

2055 -0.66 0.07 -0.31 -0.30 1.10% 

2085 -0.62 0.08 -0.27 -0.25 1.80% 

25% Impervious, QE = 0.44 

Historic -0.40 -0.26 -0.32 -0.31 0.00% 

2055 -0.41 -0.12 -0.29 -0.28 0.00% 

2085 -0.40 -0.12 -0.27 -0.26 0.00% 
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Table 6-10.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site 

Design Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group B 

Time Minimum Maximum Average Median Percent 
Exceeding 

80% Impervious, QE =1.69 

Historic -0.53 0.10 -0.13 -0.07 19.50% 

2055 -0.59 0.53 0.00 0.03 59.10% 

2085 -0.52 0.55 0.07 0.11 67.50% 

50% Impervious, QE =0.90 

Historic -0.33 0.10 -0.05 -0.02 28.00% 

2055 -0.37 0.41 0.03 0.06 66.80% 

2085 -0.32 0.42 0.08 0.11 74.10% 

25% Impervious, QE = 0.44 

Historic -0.19 0.05 -0.04 -0.02 22.90% 

2055 -0.22 0.23 0.01 0.02 63.60% 

2085 -0.19 0.24 0.04 0.06 72.20% 

 

Table 6-11.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site 

Design Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group C 

Time Minimum Maximum Average Median Percent 
Exceeding 

80% Impervious, QE =1.54 

Historic -0.47 -0.06 -0.20 -0.17 0.00% 

2055 -0.51 0.21 -0.12 -0.10 13.20% 

2085 -0.47 0.22 -0.08 -0.05 30.50% 

50% Impervious, QE =0.90 

Historic -0.29 0.01 -0.10 -0.07 3.10% 

2055 -0.32 0.21 -0.04 -0.02 35.50% 

2085 -0.29 0.21 -0.01 0.01 55.00% 

25% Impervious, QE = 0.33 

Historic 0.00 0.18 0.12 0.13 98.40% 

2055 -0.02 0.31 0.15 0.16 99.50% 

2085 0.00 0.31 0.17 0.19 99.60% 
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Table 6-12.  Relationship of Excess Stormwater Volume to QE Calculated using Environmental Site 

Design Procedure from 2009 Design Manual (MDE, 2009) – Hydrologic Soil Group D 

Time Minimum Maximum Average Median Percent 
Exceeding 

80% Impervious, QE =1.39 

Historic -0.45 -0.15 -0.26 -0.23 0.00% 

2055 -0.48 0.04 -0.20 -0.18 1.20% 

2085 -0.45 0.05 -0.16 -0.14 1.80% 

50% Impervious, QE =0.90 

Historic -0.32 -0.10 -0.18 -0.16 0.00% 

2055 -0.35 0.04 -0.14 -0.13 1.60% 

2085 -0.32 0.05 -0.11 -0.10 4.70% 

25% Impervious, QE = 0.33 

Historic 0.02 0.17 0.11 0.13 100.00% 

2055 0.00 0.26 0.14 0.15 100.00% 

2085 0.02 0.27 0.16 0.17 100.00% 

 

The calculations reveal a few anomalies.  For historic conditions for D soils and 25% impervious the 

calculated difference between runoff from developed land and good conditions woods is always greater 

than QE, and this is also almost always the case for C soils at 25% impervious, although the magnitude of 

the difference is small.  This is primarily due to the coarse resolution of the simplified statewide tables in 

Chapter 5 of MDE (2009) that yields approximate PE values only in 0.2-inch increments.  For example, 

this results in PE
 and QE being identical for A, B, C, and D soils at 50% impervious. 

The percent of cases in which QE calculated under current design guidance does not provide sufficient 

control volume to match forest conditions does tend to increase for future climate, but, except for B soils, 

the change in percentage is generally small.  Perhaps the most important result is that the magnitude of 

the difference between the calculated treatment need and QE is small, even under 2085 conditions.  The 

largest average difference (2085 for C soils at 25% impervious) is 0.17 inches.  Further, the biggest 

estimates of untreated runoff depth are associated with instances in which the statewide method already 

tends to underestimate the need.  Where the 2085 average is greater than zero, the largest increase 

relative to the larger of the calculated need and QE is only 0.08 inches. 

6.3.2 Design of Individual Practices 

While the focus of urban stormwater management in Maryland has changed to ESD, MDE (2009) also 

provides design guidance for individual BMPs based on WQv and CPv – although the net effect of all 

practices on a site must still meet ESD objectives.  Meeting ESD objectives will typically occur through a 

mix of BMPs of different types, each of which will have its own hydrologic and pollutant removal 

characteristics. 
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Unlike ESD, the design guidance for individual practices such as bioretention continues to recognize a 

separate WQv.  The WQv is defined as the storage needed to capture and treat runoff from the 90th 

percentile (24-hr) rainfall event.  MDE (2009) defines this event as equivalent to 1 inch in the eastern part 

of Maryland and 0.9 inches in the western four counties.  Thus, the guidelines for BMP design are also 

tied to specific assumptions about historic climate, which may or may not be appropriate in the future. 

Storm event runoff in excess of the WQv can bypass treatment altogether (as in BMPs based on 

infiltration) or be subject to reduced treatment efficiency due to less contact time (as in BMPs based on 

filtration or retention).  Incomplete water quality treatment of runoff in excess of the WQv is expected; 

however, if the fraction of annual runoff that exceeds the WQv increases then the total pollutant removal 

efficiency will be less than expected. 

As noted above in Section 4.0, we found no consistent prediction of an increase in the magnitude of the 

90th percentile event across Maryland.  In many cases, the future 90th percentile event was predicted to 

be less than the historic event.  Simulations of the response of bioretention (designed for the historic 

WQv) to future 90th percentile events and found that the median change across all sites and scenarios 

resulted in a decline of 18% in total outflow by 2055 and 12% by 2085 (Section 5.2).  (All these results are 

conditional on the LOCA statistical downscaling process and may differ using other approaches.) 

The projected future results suggest that the bioretention BMP is likely to maintain (or even improve) 

pollutant removal efficiency in future for the majority of individual storm events.  However, most climate 

simulations indicate that annual average total precipitation volume will increase in future, even where 

there is no consistent increase in the 90th percentile event.  That indicates a situation where a greater 

fraction of annual precipitation is packed into the more extreme events above the 90th percentile.  Runoff 

simulations suggest that the magnitude of these lower frequency events will increase over time and that 

the change will be greater for more extreme events.  This will result in an increase in treatment bypass 

under such events, which could decrease the long-term average water quality performance of BMPs. 

The extended wet detention results in Section 5.3 also show that, on average, the volume of the 90th 

percentile WQv event is predicted to decline under future climate, which would result in longer detention 

time and potentially greater pollutant removal.  However, for larger events with recurrence intervals of one 

year or greater the predicted total flow through and the peak outflow from extended wet detention ponds 

tends to increase, resulting in reduced treatment times.  The predicted changes in the performance of wet 

detention ponds and bioretention are thus similar.  Bioretention does have an advantage of more flexibility 

if climate forecasts turn out to be incorrect as it is generally easier and less expensive to expand 

bioretention than to rebuild detention basins. 
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7.0 DISCUSSION 

7.1 POTENTIAL USE OF CONTINUOUS SIMULATION 

A comprehensive analysis of the implications of future changes in the cumulative distribution function of 

rainfall events on BMP performance may require the use of continuous simulation, not just analysis of the 

response to events of a specified occurrence.  Continuous simulation is outside the scope of the current 

work, which is focused on the IDF analysis.  A detailed analysis should also represent the full details of 

realistic site layouts. 

An example of such a study (in which the author of this report was a participant) is provided by Job et al. 

(2018).  Job et al. used continuous model simulations to evaluate site conditions and BMP performance 

under future climate conditions in five U.S.  locations, including Harford County, MD.  The analysis 

provides insights into the potential impacts of changes in the characteristics of precipitation time series 

(rather than just extreme events) on stormwater infrastructure performance and allows comparison of how 

the responses may differ between conventional stormwater detention and GI practices.  

Job et al. used the Hydrologic Simulation Program – FORTRAN (HSPF) model (Bicknell et al., 2004) to 

simulate hourly unit-area time series of runoff and pollutant loads (total suspended solids, total nitrogen, 

and total phosphorous) from pervious and impervious land.  Future climate scenarios were developed 

from the current time series using dynamically downscaled GCMs.  Realistic site layouts and associated 

stormwater management infrastructure were simulated using the System for Urban Stormwater Treatment 

and Analysis Integration (SUSTAIN) model (Shoemaker et al., 2009), a decision support system and 

modeling tool.  Hourly output is provided by SUSTAIN for each individual BMP and at the site outlet.   

The SUSTAIN stormwater management scenarios considered five types of developed land use: 

residential, commercial, mixed-use, ultra-urban, and green street areas combined with a variety of 

stormwater BMPs, ranging from gray storage infrastructure to GI designs consistent with local design 

standards, requirements, and guidance.   

Each stormwater management approach was modeled under current and various projected future climate 

scenarios for the mid-21st century and evaluated for pollutant removal and ability to match pre-

development hydrology.  The site’s practices were then modified to achieve the same or better 

performance as under current climate using SUSTAIN’s optimization function to identify the lowest cost 

alternative.  For the Harford County, MD study area, Job et al. modified the initial designs using two 

different management strategies – increasing the size of the structural storage practices and addressing 

water quality performance gaps by incorporating additional distributed GI practices into the site.   

Gray and green BMP systems generally removed more total runoff volume and pollutant mass under 

future increases in precipitation and runoff compared to current conditions.  However, overall site export 

rates of runoff volume and pollutant mass still increased (i.e., BMPs did not remove 100% of the 

additional runoff/pollutant load resulting from increased precipitation) despite better volume/mass 

removal.  Changes in large storm event runoff show that BMPs designed for current conditions will likely 

not mitigate increases in stormwater runoff and associated downstream channel erosion and flooding 

impacts under projected future conditions.  Thus, there may be a need for adapting site stormwater 

infrastructure to future precipitation conditions to protect downstream water resources.  Sites may also 

need to be configured to be adaptable in the first place to allow for the placement of additional stormwater 

treatment if needed in the future. 
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Job et al. found that increasing BMP size/volume can mitigate the potential increases in flow, runoff 

volume, and pollutant loads, but larger BMPs result in increased costs.  The most difficult performance 

measure to mitigate was usually control of large flooding event outflows, suggesting that site designs will 

need greater temporary volume storage and/or reconfiguration of outlet structures to mitigate flooding and 

channel erosion risk in locations where the magnitude of extreme events is expected to increase.   

Overall, approaches to stormwater management that combined both conventional and GI elements 

tended to have the best combined cost resiliency.  GI also provides an advantage in flexibility, because it 

typically has a shorter design life before rehabilitation is required – so it would be possible to commit less 

investment now and use an adaptive, incremental approach as the climate evolves.  There is an ongoing 

need for additional detailed, site-specific continuous simulation studies to fully understand the ways in 

which BMPs, stormwater conveyance infrastructure, and receiving streams may respond to potential 

future climate conditions. 

7.2 ADAPTATION OF BMPS IN A CHANGING CLIMATE 

Stormwater management attempts to ensure desirable outcomes in the face of uncertain conditions.  The 

presence of uncertainty is typically addressed through a risk analysis approach in which an attempt is 

made to minimize the probability of adverse outcomes.  Traditional engineering risk assessment is based 

on a summary of the environmental conditions the project is likely to face (based on an implicit 

assumption that the past is an adequate guide to the future) accompanied by the addition of a margin of 

safety to protect against failure.   

Climate change introduces a new level of complexity.  Despite significant advances in climate science 

and modeling, and clearer understanding of many key aspects of climate, it is not currently possible to 

forecast long-term, local-scale changes in climate with accuracy.  Key challenges include differing levels 

of confidence in projections of future climate changes at spatial and temporal scales relevant to resource 

managers, variability in projecting the effects of climate change and management activities on the 

environment, and potential nonlinear or abrupt changes (Dessai and Hulme, 2004; West et al., 2012).  

These uncertainties must be acknowledged, together with the recognition that climate change impacts will 

present an evolving, moving target throughout the coming century.  It is common for managers to cite the 

high uncertainties associated with climate change projections as an obstacle to making adaptation 

decisions (Weaver et al. 2013; Hoffman et al. 2014).  A key realization is that, while decision-making 

under large climate change uncertainties can be difficult, uncertainty is not equivalent to knowing nothing 

(Hoffman et al. 2014).  There is a lot we know, and a large body of research and case studies that can be 

drawn upon to inform adaptation planning.  

At the watershed/neighborhood scale, water quality protection plans typically involve a mix of gray and 

green practices specified to achieve a desired level of performance, with varying degrees of resilience 

and adaptability to change.  It is important to evaluate the resilience of individual practices; however, what 

really matters is the resilience of the overall water quality protection plan.  A typical plan will combine 

BMPs with varying degrees of resilience.  BMPs that have low resilience and/or adaptability may well 

have a significant role in a water quality protection plan, but should be incorporated primarily to address 

short-term issues that must be addressed now and for which changing circumstances in the future are not 

a major concern (for example, containing and controlling runoff from a contaminated industrial site).   

Uncertainty in future IDF relationships introduces uncertainty into assessment of risk and vulnerability 

associated with engineering designs.  One approach used to minimize potential future risk is conservative 
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design criteria.  For instance, New York City’s climate resiliency guidelines suggest that the current 50-

year IDF curve should be used as a proxy for the future 5-year storm for the 2080s and on-site 

detention/retention systems should be designed to retain the volume associated with the current 50-year 

curve (NYC MORR 2019).  The Federal Highway Administration (FHWA) has proposed a tiered 

framework with five levels of analysis depending on the analysis of the risks of a project and its hydrologic 

service life (Kilgore et al. 2016).  Where risk is high (based on asset criticality, vulnerability, and cost) and 

anticipated service life is long, an analysis of potential hydrologic responses to changes in both land use 

and climate with associated confidence intervals is needed (e.g., 68% confidence interval for service life 

between 30 and 75 years).  Multiple types of model and data uncertainty contribute to uncertainty in 

estimating runoff; however, a key source of uncertainty for prospective analysis is the difference between 

different climate models and greenhouse gas emission scenarios.  FHWA recommends evaluation over 

multiple climate models/scenarios to address this source of uncertainty, focusing on the potential change 

in the NOAA Atlas 14 analysis of 24-hour duration precipitation amounts (and associated confidence 

intervals) for appropriate recurrence intervals. 

In general, climate-smart strategies must address both how change will affect stressors of concern and 

how change may alter the functionality of management actions (e.g., West et al., 2018).  A key 

component of climate-smart strategies is implementing BMPs that will function as intended under future 

conditions.  In practice, assessing resilience involves selecting an appropriate range of potential climate 

futures (hazards) and assessing the associated vulnerabilities and risks of the BMPs incorporated in a 

plan.  While many lines of evidence can be assembled as to the likely response of BMPs to climate 

change, future climate conditions are subject to uncertainty.  Further, the performance of BMPs may 

change in unexpected ways.  It is therefore important to both select BMP strategies that appear to be 

robust under the range of likely future climate conditions and to monitor their effectiveness over time.  

Flexibility and adaptive management are hallmarks of sound adaptation planning and decision making 

under high degrees of uncertainty regarding future conditions.  Three general principles applicable to 

BMPs and climate change are: 

• Remain as flexible as possible—Managing under uncertainty can be a major impediment to 

implementing adaptation, making the flexibility of candidate strategies a recommended criterion 

for selection (Hoffman et al. 2014).  For BMPs, flexibility and adaptability are key considerations. 

• Look for no-regrets opportunities—Low-regret or no-regret strategies and options are widely 

recommended.  They benefit resource management regardless of whether and how climate 

changes or provide a wide array of benefits (Wilby et al. 2010; Hallegatte 2009; Hoffman et al. 

2014).  A related principle is to consider safety-margin strategies that build in additional capacity 

to accommodate future climate changes because the cost of doing so now is relatively small 

(mainly a design change), while the cost of increasing capacity after implementation can be high.  

• Look for robust solutions—Adaptation strategies should be implemented in a way that explicitly 

acknowledges future uncertainties and hedges the success of the adaptations against a wide 

range of plausible but uncertain future climatic conditions.  Options designed based on only one 

climate future have a higher risk of failure if the realized climate future differs substantially from 

that climate future.  A variety of approaches and decision tools such as traditional adaptive 

management and Robust Decision-Making (Groves and Lempert 2007; Fischbach et al. 2015) 

incorporate this principle.  
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7.3 STREAM RESTORATION DESIGN CONSIDERATIONS 

Stream restoration designers can make use of data from predicted IDF curves as one of many factors that 

must be considered in developing restoration designs that will be resilient in the face of projected future 

climate change.  Mamuye and Kebebewu (2018) cite the following changes to hydrologic conditions 

expected with changing climate, relevant to stream restoration and stormwater management:   

• Changes in precipitation patterns 

• Changes in stream flow characteristics 

• Groundwater recharge and availability 

• Changes in vegetation composition affecting interception process 

• Changes in evapotranspiration process 

Mamuye and Kebebewu (2018) also note that catchments may vary greatly in their response to changing 

hydrology, based on differences in local climate and catchment characteristics.  Therefore, additional 

modeling of impacts over time, locally and regionally, will be needed to inform restoration design. 

In one local example, Baran et al. (2019) quantified hydrological impacts of climate change for a portion 

of the Occoquan watershed in Northern Virginia.  Modeling results showed a general increase in median 

flows in the mid- and late-21st century.  Low flows were projected to decrease, while high flows were 

projected to increase, creating a larger range between low flows and high flows. 

Johnson (2019) suggests raising the priority of climate change resilience in stream restoration design 

through several means.  First, including resilience as an explicit planning objective may increase the long-

term the success of restoration projects.  Considering the ecological context and scale of a restoration 

action will recognize that not every site will have same potential.  Biological diversity and connectivity are 

considered to confer resilience in restoration because they apply to a wide variety of species and 

ecosystems.  This will include connectivity of adjacent floodplains.  When biological improvements are not 

possible (due to water quality or watershed constraints), physical resilience may be most important. 

Johnson’s (2019) review of literature showed that connectivity was found to enhance the capacity for 

stream self-organization and recovery at multiple scales.  In stream design, connectivity can be improved 

through restoring floodplain access to streamflow, habitat connections in floodplain and riparian area, as 

well as within the channel, and also barrier/dam removal that restores linear connectivity.  These types of 

design approaches offer potential for increasing resilience. 

According to Johnson (2019), success criteria for building resilience into ecological restoration may 

include 

• Planning and monitoring for resilience, to identify sources of adaptive capacity within restored and 

natural ecosystems and to define actions that foster resilience 

• Restoration approaches that promote natural sources of resilience are more likely to be 

successful than those that focus on creating optimal steady states. 

Johnson notes that past trends in climate and streamflow make it clear that stationarity of the physical 

environment is no longer a valid assumption in restoration planning.  Implications for successful design 

include: 

• Critical importance of designing for a changing flow regime – not just increases in precipitation 

and flow, but also greater uncertainty 

• There may be limitations on floodplain access and well-established vegetation, pointing to the 

need for multiple components that work together as a resilient system 
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• Developing appropriate long-term monitoring and success criteria, i.e., for mitigation sites 

• Need to consider to physical channel characteristics, including in-depth review of watershed 

condition and acknowledgement of existing or potential instabilities upstream 

• Need to consider soils and the role of temperature on soil erodibility 

• Need to plan for expected frequent periods of inundation, changes in effects of saturation on bank 

stability, and altered sediment transport  

• Vegetation survivability may be compromised due to drought conditions or frequent inundation of 

floodplain  

Doll et al. (2020) present a case study from North Carolina, showing that stream and floodplain 

restoration can be used effectively to reduce flooding under a changing climate regime.  Restoration that 

functions to address future flows can be an important component in a comprehensive watershed 

approach, providing both ecological and economic benefits.   

Stream restoration guidance developed by the State of Washington and U.S. Fish and Wildlife Service 

(Cramer, 2012) emphasizes the need to consider strategies of resistance, resilience, and response in 

addressing climate change impacts.  Design considerations include designing for future condition, 

including hydrological, sediment, and vegetation regimes.  Minimizing constraints imposed on physical or 

ecological processes will help address inherent uncertainties, as will providing sufficient room for the 

stream channel and floodplain to adjust over time.   

While designing a restored stream channel that is inadequately sized to accommodate future channel 

forming flows is an obvious concern, an over-sized channel can also induce instability.  Further, while 

models can suggest the potential range of future flows, they do not provide a definitive prediction.  

Climate-smart planning for restoration design needs to consider potential future conditions but in the 

context of the expected design life of the project and the ability to adapt to unexpected changes.  A 

resilient design should maximize the ability of the channel to adjust to altered conditions without setting 

off a cycle of geomorphic instability while also leaving space and opportunity to facilitate future restoration 

adjustments if needed. 
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APPENDIX A.   PYTHON CODE 

A-1.  IDF UPDATES 

The IDF processing code consists of six linked Python 3 scripts that must be run in order: 

1. Get_Atlas14.py 

import sys, os 

import pandas as pd 

import numpy as np 

import urllib.request, urllib.error 

from http.cookiejar import CookieJar 

 

sites_file=r'O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\MD_sites_Atlas14.csv' 

odir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_data" 

 

sites_df=pd.read_csv(sites_file) 

 

# def ATLAS14_dl(self, userLat, userLong, saveLocation, loggy): 

# outf = open(loggy, "a") 

# saveLocation = os.path.join(saveLocation, 'Atlas14_data') 

# if not os.path.exists(saveLocation): os.makedirs(saveLocation) 

 

 

for idx,site in sites_df.iterrows(): 

    userLat=float(site['Latitude']) 

    userLong=float(site['Longitude']) 

    station=site['StationID'] 

 

    # Get all IDF curve 

    file = station + "_PFTabular.csv" 

    outfile = os.path.join(odir, file) 

    if not os.path.exists(outfile): 

        try: 

            url = "https://hdsc.nws.noaa.gov/cgi-bin/hdsc/new/fe_text.csv?lat=" + str(userLat) + "&lon=" + 

str(userLong) 

            url = url + "&type=pf&data=depth&units=english&series=pds" 

            password_manager = urllib.request.HTTPPasswordMgrWithDefaultRealm() 

            cookie_jar = CookieJar() 

            opener = urllib.request.build_opener( 

                    urllib.request.HTTPBasicAuthHandler(password_manager), 

                    urllib.request.HTTPCookieProcessor(cookie_jar)) 

            urllib.request.install_opener(opener) 
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            request = urllib.request.Request(url) 

            response = urllib.request.urlopen(request) 

            body = response.read() 

            with open(outfile, 'wb') as f: 

                f.write(body) 

            print (file + " Successfully downloaded from NOAA Atlas 14 webpage") 

        except Exception as ex: 

            print ("FAILURE - unable to download " + file) 

    else: 

        print (file + " already exists") 

 

    # Get annual max series 

    file = "MD_" + station + "_ams.txt" 

    outfile = os.path.join(odir, file) 

    if not os.path.exists(outfile): 

        try: 

            url = "https://hdsc.nws.noaa.gov/pub/hdsc/data/_TimeSeries_stations/" + "MD_" + station + 

"_ams.txt" 

            password_manager = urllib.request.HTTPPasswordMgrWithDefaultRealm() 

            cookie_jar = CookieJar() 

            opener = urllib.request.build_opener( 

                    urllib.request.HTTPBasicAuthHandler(password_manager), 

                    urllib.request.HTTPCookieProcessor(cookie_jar)) 

            urllib.request.install_opener(opener) 

            request = urllib.request.Request(url) 

            response = urllib.request.urlopen(request) 

            body = response.read() 

            with open(outfile, 'wb') as f: 

                f.write(body) 

            print (file + " Successfully downloaded from NOAA Atlas 14 webpage") 

        except Exception as ex: 

            print ("FAILURE - unable to download " + file) 

            print (url) 

    else: 

        print (file + " already exists") 

 

 

#    GET mean IDF curve     

    file = station + "_existing IDF.csv" 

    outfile = os.path.join(odir, file) 

    if not os.path.exists(outfile): 

        try: 

            url = "https://hdsc.nws.noaa.gov/cgi-bin/hdsc/new/fe_text_mean.csv?lat=" + str(userLat) + "&lon=" 

+ str(userLong) 

            url = url + "&type=pf&data=depth&units=english&series=pds" 

                    #state = " " + state 

                    #state = state.replace(' ', '%') 
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                    #url = url + &selElevNum=" + C_elev + "&selElevSym=ft&selStaName=" + C_name.replace(' 

', '%20') 

            password_manager = urllib.request.HTTPPasswordMgrWithDefaultRealm() 

            cookie_jar = CookieJar() 

            opener = urllib.request.build_opener( 

                    urllib.request.HTTPBasicAuthHandler(password_manager), 

                    urllib.request.HTTPCookieProcessor(cookie_jar)) 

            urllib.request.install_opener(opener) 

            request = urllib.request.Request(url) 

            response = urllib.request.urlopen(request) 

            body = response.read() 

            with open(outfile, 'wb') as f: 

                f.write(body) 

            print (file + " Successfully downloaded from NOAA Atlas 14 webpage") 

        except Exception as ex: 

            print ("FAILURE - unable to download " + file) 

    else: 

        print (file + " already exists") 

 

2. Get_Atlas14_extra_ams.py 

import sys, os 

import pandas as pd 

import numpy as np 

import urllib.request, urllib.error 

from http.cookiejar import CookieJar 

 

 

sites_file=r'O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_extra_ams.csv' 

odir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams" 

 

sites_df=pd.read_csv(sites_file) 

 

for idx,site in sites_df.iterrows(): 

    state=site['State'] 

    station=site['StationID'] 

 

    # Get annual max series 

    file = state +"_" + station + "_ams.txt" 

    outfile = os.path.join(odir, file) 

    if not os.path.exists(outfile): 

        try: 

            url = "https://hdsc.nws.noaa.gov/pub/hdsc/data/_TimeSeries_stations/" + state + "_" + station + 

"_ams.txt" 

            password_manager = urllib.request.HTTPPasswordMgrWithDefaultRealm() 
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            cookie_jar = CookieJar() 

            opener = urllib.request.build_opener( 

                    urllib.request.HTTPBasicAuthHandler(password_manager), 

                    urllib.request.HTTPCookieProcessor(cookie_jar)) 

            urllib.request.install_opener(opener) 

            request = urllib.request.Request(url) 

            response = urllib.request.urlopen(request) 

            body = response.read() 

            with open(outfile, 'wb') as f: 

                f.write(body) 

            print (file + " Successfully downloaded from NOAA Atlas 14 webpage") 

        except Exception as ex: 

            print ("FAILURE - unable to download " + file) 

            print (url) 

    else: 

        print (file + " already exists") 

 

3. LOCA_dailymax_hist.py 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec  2 12:22:10 2019 

 

@author: scott.job 

""" 

 

import os 

from netCDF4 import Dataset 

import numpy as np 

import pandas as pd 

from datetime import datetime, timedelta 

 

 

 

sites_file=r'O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\StationGCM_hist.csv' 

idir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - IDF\Work\IDFAnalysis\IDF_python\LOCA_data" 

nc_file = 'loca_ACCESS1-0_rcp45_ppt.nc' 

odir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\LOCA_output" 

ofile = 'DailyMaxPrec_Hist_Results.csv' 

startyr = 1950 

endyr = 2005 

 

sites_df = pd.read_csv(sites_file) 

df_out = pd.DataFrame() 
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# Get lat-long grid cell arrays from one of the netCDF files (assumes all are the same) 

nc = Dataset(os.path.join(idir,nc_file)) 

gcmlat = nc.variables['lat'][:] 

gcmlong = nc.variables['lon'][:] 

gcmlong = list(map(lambda x: x - 360, gcmlong)) 

 

for idx,site in sites_df.iterrows(): 

    station=site['StationID'] 

    gcm = site['GCM'] 

    siteLat=float(site['Latitude']) 

    siteLong=float(site['Longitude']) 

    # find closest gcm cell to station 

    lat_idx,lat_val = min(enumerate(gcmlat), key=lambda x: abs(siteLat - x[1])) 

    long_idx,long_val = min(enumerate(gcmlong), key=lambda x: abs(siteLong - x[1])) 

    # open connection to netCDF file 

    file = "loca_" + gcm + "_historical_ppt.nc" 

    nc = Dataset(os.path.join(idir,file)) 

    # set conversion factor to in/day, accounting for varying time units and mm to in 

    # netCDF4 module automatically applies scale_factor when data are retrieved, no need to account for 

it 

    for var in nc.variables.keys(): 

        if 'pr' in var: 

            break 

    cfact = 1 

    units = str(nc.variables[var].units)     

    if 's-1' in units: 

        cfact = cfact * 86400 

    cfact = cfact * 0.0393701 

    # set time array 

    CDFtime = nc.variables['time'][:] 

    index = np.zeros(len(CDFtime),dtype='datetime64[D]') 

    for i in range(0,len(CDFtime)): index[i] = datetime(1900,1,1,0,0,0) + timedelta(days=int(CDFtime[i])) 

    # retrieve max daily prec for each year in period 

    df = pd.DataFrame(index=index) 

    df['MaxDailyPrec'] = nc.variables[var][:,lat_idx,long_idx] 

    df = df * cfact 

    df = df.loc[str(startyr) + '-1-1':str(endyr) + '-12-31'] 

    df = df.resample('Y').max() 

 

    df['Station'] = station 

    df['GCM'] = gcm 

    df_out = pd.concat([df_out,df],sort=False) 

    nc.close() 

    print('Finished processing: ', station,' ',gcm) 

 

df_out.index.name = 'Year' 

ofile = os.path.join(odir,ofile) 
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df_out.to_csv(ofile,date_format='%Y') 

 

4. LOCA_dailymax_fut.py 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec  2 12:22:10 2019 

 

@author: scott.job 

""" 

 

import os 

from netCDF4 import Dataset 

import numpy as np 

import pandas as pd 

from datetime import datetime, timedelta 

 

 

 

sites_file=r'O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\StationGCM_fut.csv' 

idir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - IDF\Work\IDFAnalysis\IDF_python\LOCA_data" 

nc_file = 'loca_ACCESS1-0_rcp45_ppt.nc' 

odir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\LOCA_output" 

ofile = 'DailyMaxPrec_Fut_Results.csv' 

 

sites_df = pd.read_csv(sites_file) 

df_out = pd.DataFrame() 

 

# Get lat-long grid cell arrays from one of the netCDF files (assumes all are the same) 

nc = Dataset(os.path.join(idir,nc_file)) 

gcmlat = nc.variables['lat'][:] 

gcmlong = nc.variables['lon'][:] 

gcmlong = list(map(lambda x: x - 360, gcmlong)) 

 

for idx,site in sites_df.iterrows(): 

    station=site['StationID'] 

    period = site['Period'] 

    startyr = site['StartYr'] 

    endyr = site['EndYr'] 

    pcntl = site['Percentile'] 

    gcm = site['GCM'] 

    rcp = site['rcp'] 

    siteLat=float(site['Latitude']) 

    siteLong=float(site['Longitude']) 

    # find closest gcm cell to station 
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    lat_idx,lat_val = min(enumerate(gcmlat), key=lambda x: abs(siteLat - x[1])) 

    long_idx,long_val = min(enumerate(gcmlong), key=lambda x: abs(siteLong - x[1])) 

    # open connection to netCDF file 

    file = "loca_" + gcm + "_" + rcp + "_ppt.nc" 

    nc = Dataset(os.path.join(idir,file)) 

    # set conversion factor to in/day, accounting for varying time units and mm to in 

    # netCDF4 module automatically applies scale_factor when data are retrieved, no need to account for 

it 

    for var in nc.variables.keys(): 

        if 'pr' in var: 

            break 

    cfact = 1 

    units = str(nc.variables[var].units)     

    if 's-1' in units: 

        cfact = cfact * 86400 

    cfact = cfact * 0.0393701 

    # set time array 

    CDFtime = nc.variables['time'][:] 

    index = np.zeros(len(CDFtime),dtype='datetime64[D]') 

    for i in range(0,len(CDFtime)): index[i] = datetime(1900,1,1,0,0,0) + timedelta(days=int(CDFtime[i])) 

    # retrieve max daily prec for each year in period 

#    df = pd.DataFrame(index=index,columns=['AnnualPrec']) 

    df = pd.DataFrame(index=index) 

    df['MaxDailyPrec'] = nc.variables[var][:,lat_idx,long_idx] 

    df = df * cfact 

    df = df.loc[str(startyr) + '-1-1':str(endyr) + '-12-31'] 

    df = df.resample('Y').max() 

 

    df['Station'] = station 

    df['Period'] = period 

    df['Percentile'] = pcntl 

    df['GCM'] = gcm 

    df['rcp'] = rcp 

    df_out = pd.concat([df_out,df],sort=False) 

    nc.close() 

    print('Finished processing: ', station,' ',period, ' ', pcntl) 

 

df_out.index.name = 'Year' 

ofile = os.path.join(odir,ofile) 

df_out.to_csv(ofile,date_format='%Y') 

 

5. Preprocess_AMP.py 

 

import os 

import pandas as pd 

#import numpy as np 
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input_dir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\source" 

hourly_out_dir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\proc_hourly" 

daily_out_dir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\proc_daily" 

lookup_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\MD_sites_Atlas14.csv" 

 

# identifiers cannot begin with a number 

hoursList = ['c01h', 'c02h', 'c03h', 'c06h', 'c12h', 'c24h'] 

durations = ['1-hr','2-hr','3-hr','6-hr','12-hr','24-hr'] 

 

df_final = pd.DataFrame() 

df_hourly = pd.DataFrame() 

drop_year = list() 

 

logfile = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\ams_error_log.txt" 

loglines = list() 

 

#files = ['WV_46-4763_ams.txt', 'WV_46-1324_ams.txt', 'WV_46-1323_ams.txt'] 

#for filename in files: 

for filename in os.listdir(input_dir): 

    lines = [] 

    file = os.path.join(input_dir,filename) 

    with open(file, 'r') as fileY: 

        for row in fileY: 

            row = row.split() 

            lines.append(row) 

    fileY.close() 

 

    df = pd.DataFrame(columns=['duration','year','depth']) 

 

    station = filename 

    station = station.replace('_ams.txt','') 

    writer = 0 

    for row in lines: 

        if row == []: 

            writer = 0 

            pass 

        elif row[0] == 'Duration:': 

            dur = row[1] 

            writer = 1 

            pass 



IDF Project Report  September 2020 

r  97 

 

        elif writer == 1: 

            if float(row[1]) > 1800: 

                if float(row[0]) > 0: 

                    df = df.append({'duration': 'c' + dur, 'year': row[1], 'depth': float(row[0])}, ignore_index=True) 

                else: 

                    pass 

            else: 

                if float(row[1]) > 0: 

                    date = row[0].split('/') 

                    if int(date[2]) < 1800: 

                        loglines.append("Error improper date format. Duration = " + dur + " Station = " + station + 

"\n") 

                        pass 

                    else: 

                        df = df.append({'duration': 'c' + dur, 'year': date[2], 'depth': float(row[1])}, 

ignore_index=True) 

                else: 

                    pass 

        else: 

            pass 

 

    df_01d = df.loc[df['duration']=='c01d'].copy() 

    if df_01d.empty == False: 

        df_01d['station'] = station 

        df_final = pd.concat([df_final,df_01d],ignore_index = True) 

 

 

    if df['duration'].isin(hoursList).any(): 

        df_hourly = pd.pivot_table(df,values = 'depth',index = 'year',columns='duration') 

        df_hourly = df_hourly[hoursList] 

        df_hourly.dropna(how='all',inplace=True) 

        if df_hourly.isnull().values.any(): 

            loglines.append(station + " has NaN\n") 

            df_hourly.dropna(how='any', inplace=True) 

        drop_year.clear() 

        for i in range(df_hourly.shape[0]): 

            durs = df_hourly.iloc[i] 

            if not durs.is_monotonic: 

                loglines.append('station ' + station + ', year ' + durs.name + "\n") 

                drop_year.append(durs.name) 

        for year in drop_year: 

            df_hourly.drop(labels=year, inplace=True) 

        df_hourly.columns = durations 

        ofile = os.path.join(hourly_out_dir,station + '_proc.csv') 

        df_hourly.to_csv(ofile) 

 

    print('Processed ',station) 
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daily_out_file = os.path.join(daily_out_dir,'daily_ams_all.csv') 

df_final.to_csv(daily_out_file) 

 

with open(logfile, 'w') as the_file: 

    the_file.writelines(loglines) 

    the_file.close 

 

lookup_df = pd.read_csv(lookup_file) 

 

ratios = pd.DataFrame(columns = ['Station', 'Remote_Daily_Station', 'Ratio', 'Matched_Years']) 

df_final.drop(['duration'], axis=1, inplace=True) 

for idx,stadata in lookup_df.iterrows(): 

    dailysta = (stadata['State'] + "_" + stadata['StationID']) 

    hourlysta = (stadata['HourlyST'] + "_" + stadata['HourlyStaID']) 

    remotedailysta = stadata['RemoteDailyStation'] 

    if dailysta == hourlysta: 

        ratios.loc[len(ratios), :] = [dailysta,hourlysta,1,'n/a'] 

    else: 

        df_localsta = df_final.loc[df_final['station']==dailysta].copy() 

        df_remotesta = df_final.loc[df_final['station']==remotedailysta].copy() 

        df_localsta.set_index('year', inplace = True) 

        df_remotesta.set_index('year', inplace = True) 

        df_localsta.columns = ['local_depth','local_station'] 

        df_remotesta.columns = ['remote_depth','remote_station'] 

        df_join = pd.concat([df_localsta,df_remotesta], axis=1, join='inner') 

        ofile = os.path.join(daily_out_dir,dailysta + '_MatchYears.csv') 

        df_join.to_csv(ofile) 

        if df_join.shape[0] <= 5: 

            ratio = 1 

        else: 

            s_mean = df_join.mean(axis = 0) 

            ratio = s_mean.get(key='local_depth') / s_mean.get(key='remote_depth') 

        ratios.loc[len(ratios), :] = [dailysta,remotedailysta,ratio,df_join.shape[0]] 

 

ratios.set_index('Station', inplace = True) 

ofile = os.path.join(daily_out_dir,'01d_ratios.csv') 

ratios.to_csv(ofile) 

 

6. Make_IDF_V6.py 

import os 

import inspect 

import datetime 

from shutil import copyfile 

import pandas as pd 

import numpy as np 
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from lmoments3 import distr 

from inspect import getframeinfo, stack 

from sklearn.linear_model import LinearRegression 

 

# NB: modified lmoments3 __init__.py to use comb from scipy.special instead of scipy.misc (deprecated) 

# NB: lmoments 1.03 tends to sort input array in ascending order for lmom_fit.  Do not pass it arrays that 

must retain their order for later use 

 

#Python 3.6 -  

# v6: Built from v5-Debug.  Added 1-hr and 2-hr constraint factors; changed final renormalization 

approach. 

 

#debugfile = r"C:\Projects\CBT\Debug\debuglog.txt" 

#debugfile = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\debuglog.txt" 

#outf = open(debugfile, "w") 

 

#debug inspection output 

def logvar(variable, Vars=vars()): 

    #from inspect import getframeinfo, stack 

    outf.write("Variable name: ") 

    for k in Vars: 

        if type(variable) == type(Vars[k]): 

            if variable is Vars[k]: 

                outf.write(k) 

    caller = getframeinfo(stack()[1][0]) 

    outf.write("\nLine #: " + str(caller.lineno)) 

    outf.write("\n\n" + str(variable) + "\n\n***********************\n") 

 

 

 

header_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\IDF_header.csv" 

#header_file = r"C:\Projects\CBT\IDF_header.csv" 

odir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - IDF\Work\IDFAnalysis\IDF_python\Results" 

#odir = r"C:\Projects\CBT\Debug" 

 

dt = datetime.datetime.now() 

dtStr = dt.strftime("%Y%m%d-%H%M") 

ofilename = "IDF_Results_" + dtStr + ".csv" 

ofile = os.path.join(odir,ofilename) 

logfilename = "IDF_log_" + dtStr + ".txt" 

logfile = os.path.join(odir,logfilename) 

loglines = list() 

 

copyfile(header_file, ofile) 
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returnintervals = ['1-yr','2-yr','5-yr','10-yr','25-yr','50-yr','100-yr','200-yr','500-yr','1000-yr'] 

durations = ['1-hr','2-hr','3-hr','6-hr','12-hr','24-hr'] 

col1 = '1-hr' 

col2 = '2-hr' 

col24 = '24-hr' 

col1d = '1-day' 

col3 = '3-hr' 

col4 = '6-hr' 

col5 = '12-hr' 

####################################################################################

################# 

# Process historic IDF data from Atlas 14 station files 

####################################################################################

################# 

 

atlas14_IDF_dir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_idf" 

#atlas14_IDF_dir = r"C:\Projects\CBT\Atlas14_idf" 

results = list() 

 

DF_a14_IDF = {} 

 

for filename in os.listdir(atlas14_IDF_dir): 

 

    file = os.path.join(atlas14_IDF_dir,filename) 

 

    station = filename 

    station = station.replace('_existing IDF.csv','') 

 

    df = pd.read_csv(file, engine='python', header=None, skiprows=18, index_col=0, names = 

returnintervals, skipinitialspace=True, skipfooter=12) 

    df.index = df.index.str.replace(r':', '') 

    df.rename(index = {'60-min':'1-hr'}, inplace = True) 

    df = df.transpose() 

 

    output = [station,'Historic','Atlas14'] 

    for index, row in df.iterrows(): 

        for index,value in row.items(): 

                output.append(value) 

    results.append(output) 

 

    DF_a14_IDF[station] = df 

 

####################################################################################

################# 

# Derive future climate results 
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####################################################################################

################# 

 

hourly_ams_dir = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\proc_hourly" 

ratio_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\proc_daily\01d_ratios.csv" 

run_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\StationGCM_fut.csv" 

#run_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\StationGCM_fut_2stn.csv" 

sta_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\MD_sites_Atlas14.csv" 

hist_GCM_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\LOCA_output\DailyMaxPrec_Hist_Results.csv" 

fut_GCM_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\LOCA_output\DailyMaxPrec_Fut_Results.csv" 

#hourly_ams_dir = r"C:\Projects\CBT\Atlas14_ams\proc_hourly" 

#ratio_file = r"C:\Projects\CBT\Atlas14_ams\proc_daily\01d_ratios.csv" 

#run_file = r"C:\Projects\CBT\StationGCM_fut.csv" 

#run_file = r"C:\Projects\CBT\StationGCM_fut_debug.csv" 

#sta_file = r"C:\Projects\CBT\MD_sites_Atlas14.csv" 

#hist_GCM_file = r"C:\Projects\CBT\LOCA_output\DailyMaxPrec_Hist_Results.csv" 

#fut_GCM_file = r"C:\Projects\CBT\LOCA_output\DailyMaxPrec_Fut_Results.csv" 

daily_ams_file = r"O:\Projects\Chesapeake Bay Trust\2019 RRsc5 - 

IDF\Work\IDFAnalysis\IDF_python\Atlas14_ams\proc_daily\daily_ams_all.csv" 

 

df_ratio = pd.DataFrame() 

df_run = pd.DataFrame() 

df_sta = pd.DataFrame() 

df_histGCM = pd.DataFrame() 

df_futGCM = pd.DataFrame() 

histGCM = pd.DataFrame() 

futGCM = pd.DataFrame() 

df_output = pd.DataFrame() 

 

df_ratio = pd.read_csv(ratio_file, index_col='Station') 

df_run = pd.read_csv(run_file) 

df_sta = pd.read_csv(sta_file, index_col='StationID') 

df_histGCM = pd.read_csv(hist_GCM_file) 

df_futGCM = pd.read_csv(fut_GCM_file) 

 

dict_scen ={'Mid10th':'2055-10th', 

            'Mid50th_rcp45':'2055-RCP4.5-50th', 

            'Mid50th_rcp85':'2055-RCP8.5-50th', 

            'Mid90th':'2055-90th', 

            'End10th':'2085-10th', 
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            'End50th_rcp45':'2085-RCP4.5-50th', 

            'End50th_rcp85':'2085-RCP8.5-50th', 

            'End90th':'2085-90th'} 

 

DF_ams_dict = {} 

df_ams = pd.DataFrame() 

DF_ams_1d = pd.DataFrame() 

#load the full set of daily AMS data 

DF_ams_1d = pd.read_csv(daily_ams_file)  #constrained data correction applied below near line 195 

when subset is extracted 

 

#loading the hourly data; typically a reduced set of years compared to the daily data 

#historical IDF parms should be computed from the full set of daily data used by Atlas14 

#not from the 24-hr sum 

for filename in os.listdir(hourly_ams_dir): 

    file = os.path.join(hourly_ams_dir,filename) 

    station = filename 

    station = station.replace('_proc.csv','') 

    df_ams = pd.read_csv(file, index_col='year') 

    #logvar(df_ams) 

    # Atlas14 Volume 2 constrained to unconstrained correction factors - but do not allow 2hr > 3hr or 1 hr 

> 2hr 

    df_ams[col24] = df_ams[col24] * 1.13 

    df_ams[col2] = df_ams[col2] *1.05 

    df_ams[col1] = df_ams[col1] * 1.16 

    df_ams[col2] = np.where(df_ams[col2] < df_ams[col3], df_ams[col2], df_ams[col3]) 

    df_ams[col1] = np.where(df_ams[col1] < df_ams[col2], df_ams[col1], df_ams[col2]) 

 

    DF_ams_dict[str(station)] = df_ams 

    #logvar(df_ams) 

data_a14 = pd.DataFrame() 

 

# IDF station loop, 

for idx,row in df_run.iterrows(): 

    station = row['StationID'] 

    sta_name = df_sta.loc[station,'StationName'] 

    period = row['Period'] 

    pcnt = row['Percentile'] 

    gcm = row['GCM'] 

    rcp = row['rcp'] 

    #logvar(station) 

    #logvar(period) 

    #logvar(pcnt) 

 

    hrly_sta = (df_sta.loc[station,'HourlyST'] + "_" + df_sta.loc[station,'HourlyStaID']) 

    df_ams = DF_ams_dict[str(hrly_sta)] 

    st_station = ("MD_" + station) 
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    ratio = df_ratio.loc[st_station,'Ratio'] 

    #logvar(ratio) 

    df_ams = df_ams * ratio 

    #logvar(df_ams) 

    #data_hist = df_ams.to_numpy(copy=True) 

 

    #return period 

    RT=np.array([1,2,5,10,25,50,100,200,500,1000]); 

    #AEP from ARI 

    P=1-(1-np.exp(-1/RT)); 

 

    df_A14ams_IDF = pd.DataFrame(index=returnintervals, columns=durations) 

    # need two cols to force it to remain a dataframe 

    df_A14ams_IDF_1d = pd.DataFrame(index=returnintervals, columns=['1-day', 'station']) 

 

    #daily data 

    df_ams_1d = DF_ams_1d[DF_ams_1d['station']==st_station] 

 

    # Atlas14 Volume 2 constrained to unconstrained correction factor 

    inar = np.asarray(df_ams_1d['depth']).copy() * 1.13 

    # for station with hourly data only, no daily, substitute the 24-hr sum 

    # note this was already multiplied by the constrained factor above 

    if len(inar)==0: 

        inar = np.asarray(df_ams[col24]).copy()  

 

    # notice: the parameter order derived by lmoments3 is different from the gev.fit. 

     

    parm_maxfit_ams_1d = distr.gev.lmom_fit(inar,lmom_ratios=4) 

    df_A14ams_IDF_1d['1-day'] = 

(distr.gev.ppf(P,parm_maxfit_ams_1d['c'],parm_maxfit_ams_1d['loc'],parm_maxfit_ams_1d['scale'])) 

    df_A14ams_IDF_1d['station'] = st_station 

    #logvar(parm_maxfit_ams_1d) 

 

    for col in df_ams: 

        inar=np.asarray(df_ams[col]).copy() 

        parm_maxfit_ams = distr.gev.lmom_fit(inar,lmom_ratios=4) 

        df_A14ams_IDF[col] = 

(distr.gev.ppf(P,parm_maxfit_ams['c'],parm_maxfit_ams['loc'],parm_maxfit_ams['scale'])) 

        #logvar(parm_maxfit_ams) 

 

    histGCM = df_histGCM.loc[(df_histGCM["Station"] == str(station)) & (df_histGCM["GCM"] == str(gcm)), 

["Year","MaxDailyPrec"]] 

    gcm_con = histGCM.to_numpy(copy=True) 

    futGCM = df_futGCM.loc[(df_futGCM["Station"] == str(station)) & (df_futGCM["GCM"] == str(gcm)) & 

(df_futGCM["Period"] == str(period)) & (df_futGCM["Percentile"] == str(pcnt)) & (df_futGCM["rcp"] == 

str(rcp)), ["Year","MaxDailyPrec"]] 

    gcm_fut = futGCM.to_numpy(copy=True) 
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    # Fit extreme value distribution 

    # GEV distribution 

    # Initialize vectors 

    IDF=np.zeros((len(durations),np.size(P))); 

    IDF_gen1=np.zeros((len(durations),np.size(P))); 

 

    max_gcm_con=gcm_con[:,1]; 

    max_gcm_fut=gcm_fut[:,1]; 

    # Atlas14 Volume 2 constrained to unconstrained correction factor applied to GCM daily output 

    max_gcm_con = max_gcm_con * 1.13 

    max_gcm_fut = max_gcm_fut * 1.13 

 

    inar=max_gcm_con.copy() 

    parm_maxfit_gcm=distr.gev.lmom_fit(inar,lmom_ratios=4); 

    inar=max_gcm_fut.copy() 

    parm_maxfit_gcm_fut=distr.gev.lmom_fit(inar,lmom_ratios=4); 

    #max_gcm_fut = np.flipud(max_gcm_fut); 

    # do not need flipud.  These should now be in descending order because not resorted by lmoments3 

    #max_gcm_con = np.flipud(max_gcm_con); 

    inar=np.asarray(df_ams[col24]).copy() 

    parm_maxfit_24h=distr.gev.lmom_fit(inar,lmom_ratios=4); 

    #logvar(parm_maxfit_gcm) 

    #logvar(parm_maxfit_gcm_fut) 

    #logvar(parm_maxfit_24h) 

 

    # adjustment 1 

    inar=max_gcm_fut.copy() 

    

pre_model=distr.gev.ppf(distr.gev.cdf(inar,parm_maxfit_gcm_fut['c'],parm_maxfit_gcm_fut['loc'],parm_ma

xfit_gcm_fut['scale']), 

                            parm_maxfit_ams_1d['c'],parm_maxfit_ams_1d['loc'],parm_maxfit_ams_1d['scale']); 

 

    # adjustment 2 

    inar=max_gcm_fut.copy() 

    

pre_model_fut_reverse=distr.gev.ppf(distr.gev.cdf(inar,parm_maxfit_gcm_fut['c'],parm_maxfit_gcm_fut['lo

c'],parm_maxfit_gcm_fut['scale']), 

                            parm_maxfit_gcm['c'],parm_maxfit_gcm['loc'],parm_maxfit_gcm['scale']); 

 

    # adjusted stn future daily data 

    pre_model_daily=max_gcm_fut+pre_model-pre_model_fut_reverse; 

    #logvar(max_gcm_fut) 

    #logvar(pre_model) 

    #logvar(pre_model_fut_reverse) 

    #logvar(pre_model_daily) 

 



IDF Project Report  September 2020 

r  105 

 

    # fitting GEV of stn future daily data 

    inar=pre_model_daily.copy() 

    parm_maxfit_stnfutdaily=distr.gev.lmom_fit(inar,lmom_ratios=4); 

 

    # IDFs for model output, historic and future periods 

    IDF[5,:]= (distr.gev.ppf(P,parm_maxfit_gcm['c'],parm_maxfit_gcm['loc'],parm_maxfit_gcm['scale'])); 

    

IDF_gen1[5,:]=(distr.gev.ppf(P,parm_maxfit_stnfutdaily['c'],parm_maxfit_stnfutdaily['loc'],parm_maxfit_stnf

utdaily['scale'])); 

 

    # subdaily QM 

    inar=pre_model_daily.copy() 

    test1 = distr.gev.cdf(inar,parm_maxfit_24h['c'],parm_maxfit_24h['loc'],parm_maxfit_24h['scale']) 

    #logvar(pre_model_daily) 

    test1[np.where(test1<1.0E-5)] = 1.0E-5 

    test1[np.where(test1>0.99999)] = 0.99999 

    #logvar(test1) 

    #logvar(parm_maxfit_24h) 

    for i in range(0,len(durations) - 1): 

        print (station, gcm, rcp, i) 

        #logvar(i) 

        max_hist_con=np.asarray(df_ams[durations[i]]) 

        #logvar(max_hist_con) 

        #fitting GEV distribution 

        parm_maxfit_hist= distr.gev.lmom_fit(max_hist_con, lmom_ratios=4); 

        #logvar(parm_maxfit_hist) 

        #smoothed model future subdaily - scaled to 1-day IDF 

        

pre_model_sub=distr.gev.ppf(test1,parm_maxfit_hist['c'],parm_maxfit_hist['loc'],parm_maxfit_hist['scale']); 

        #logvar(pre_model_sub) 

        

#pre_model_sub=distr.gev.ppf(distr.gev.cdf(inar,parm_maxfit_24h['c'],parm_maxfit_24h['loc'],parm_maxfit

_24h['scale']), 

        #                            parm_maxfit_hist['c'],parm_maxfit_hist['loc'],parm_maxle']); 

        # regression with intercept using polyfit 

        #post_para=np.polyfit(pre_model_daily,pre_model_sub,1); 

        #pre_model1=np.polyval(post_para,pre_model_daily); 

        # no intercept regression using sklearn LinearRegression 

        arr1 = pre_model_daily.reshape(-1, 1).copy() 

        arr2 = pre_model_sub.reshape(-1, 1).copy() 

        reg = LinearRegression(fit_intercept = False).fit(arr1, arr2) 

        arr3 = reg.predict(arr1) 

        pre_model1 = arr3.reshape((arr3.shape[0],)) 

        #logvar(reg.coef_) 

        #logvar(reg.intercept_) 

        #logvar(pre_model_daily) 

        #logvar(df_ams) 
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        #logvar(pre_model_sub) 

        #logvar(pre_model1) 

 

        #smoothed model historic subdaily 

        inar=max_gcm_con.copy() 

        test2 = distr.gev.cdf(inar,parm_maxfit_24h['c'],parm_maxfit_24h['loc'],parm_maxfit_24h['scale']) 

        test2[np.where(test2<1.0E-5)] = 1.0E-5 

        test2[np.where(test2>0.99999)] = 0.99999 

 

        pre_model_sub0=distr.gev.ppf(test2, 

parm_maxfit_hist['c'],parm_maxfit_hist['loc'],parm_maxfit_hist['scale']); 

 

        # no intercept regression using sklearn LinearRegression 

        arr1 = max_gcm_con.reshape(-1, 1).copy() 

        arr2 = pre_model_sub0.reshape(-1, 1).copy() 

        reg = LinearRegression(fit_intercept = False).fit(arr1, arr2) 

        arr3 = reg.predict(arr1) 

        pre_model0 = arr3.reshape((arr3.shape[0],)) 

 

        #historical model IDF 

        inar=pre_model0.copy() 

        parm_maxfit_gcm0=distr.gev.lmom_fit(inar, lmom_ratios=4); 

        IDF[i,:]=(distr.gev.ppf(P,parm_maxfit_gcm0['c'],parm_maxfit_gcm0['loc'],parm_maxfit_gcm0['scale'])); 

 

        #future adjusted IDF 

        inar=pre_model1.copy() 

        parm_maxfit_gcm1=distr.gev.lmom_fit(inar, lmom_ratios=4); 

        #logvar(parm_maxfit_gcm1) 

        

IDF_gen1[i,:]=(distr.gev.ppf(P,parm_maxfit_gcm1['c'],parm_maxfit_gcm1['loc'],parm_maxfit_gcm1['scale'])

); 

 

    df_IDF = pd.DataFrame(IDF, index=durations, columns=returnintervals) 

    df_IDF = df_IDF.transpose() 

    df_IDF_gen1 = pd.DataFrame(IDF_gen1, index=durations, columns=returnintervals) 

    df_IDF_gen1 = df_IDF_gen1.transpose() 

  

    #logvar(df_A14ams_IDF) 

    #logvar(df_A14ams_IDF_1d) 

    #logvar(df_IDF) 

    #logvar(df_IDF_gen1) 

 

    data_a14 = DF_a14_IDF[station] 

    #logvar(data_a14) 

    idf_project = pd.DataFrame(index=returnintervals, columns=durations) 

    alt_ratio = data_a14[col24]/df_A14ams_IDF_1d[col1d] 

    #logvar(alt_ratio) 
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    idf_project[col24]=alt_ratio*list(df_IDF_gen1[col24]) 

 

    #alt_ratio2 = idf_project[col24]/df_IDF_gen1[col24] 

    #logvar(alt_ratio2) 

    for i in range(0,len(durations) - 1): 

        mycol = durations[i] 

        #alt_ratio2 = data_a14[mycol]/df_IDF[mycol] 

        #alt_ratio2 = data_a14[mycol]/df_A14ams_IDF[mycol] 

        #idf_project[durations[i]]=alt_ratio2*list(df_IDF_gen1[durations[i]]) 

        #subdaily results tend to be unstable at high recurrences so estimate based on ratio of GCM fit for 

dur relative to 

        #GCM fit for 24 hr data times the 1-day result calculated with the parms from the longer ams series 

        idf_project[durations[i]] = df_A14ams_IDF[mycol]/df_A14ams_IDF[col24] * idf_project[col24] 

         

    # final adjustments where values across durations for a given recurrence is not monotonically 

increasing 

    # per p. 39 in Atlas 14 v. 2.  Do this from the top down as the 1-hr tends to be most unstable 

    #logvar(data_a14) 

    #logvar(idf_project) 

    for j in range(0, len(returnintervals)): 

        #for i in range(1, len(durations)): 

        for i in range(len(durations)-1, 0, -1): 

            if idf_project.iat[j, i] < idf_project.iat[j, i-1]: 

                idf_project.iat[j, i-1] = idf_project.iat[j, i]             

    #logvar(idf_project) 

     

    # test if monotonically increasing across durations and recurrence intervals 

    for i in range(idf_project.shape[0]): 

        rets = idf_project.iloc[i] 

        if not rets.is_monotonic_increasing: 

            loglines.append("Station ID: "+ station + " Station Name: " + sta_name + " Future period: " + 

period + " Percentile: " + pcnt + " GCM: " + gcm + " rcp: " + rcp + " " + rets.name + " is not monotonically 

increasing.\n" + str(rets) + "\n") 

 

    for i in range(idf_project.shape[1]): 

        durs = idf_project.iloc[:,i] 

        if not durs.is_monotonic_increasing: 

            loglines.append("Station ID: "+ station + " Station Name: " + sta_name + " Future period: " + 

period + " Percentile: " + pcnt + " GCM: " + gcm + " rcp: " + rcp + " " + durs.name + " is not monotonically 

increasing.\n" + str(durs) + "\n") 

 

#output the results 

    output = [station,dict_scen[(period + pcnt)],(gcm + "_" + rcp)] 

 

    for index, row in idf_project.iterrows(): 

        for index,value in row.items(): 
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                output.append(value) 

    results.append(output) 

    print (idx, station, gcm, rcp) 

 

with open(ofile, 'a') as file: 

    for line in results: 

        file.write(','.join([str(x) for x in line]) + '\n') 

    file.close() 

 

with open(logfile, 'w') as the_file: 

    if len(loglines) == 0: 

        the_file.writelines("All durations and return intervals are monotonically increasing\n") 

    else: 

        the_file.writelines(loglines) 

    the_file.close 

#debug output 

#outf.close() 

 

A-2.  PEAKS-OVER-THRESHOLD ANALYSIS 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Nov  1 10:18:30 2019 

 

@author: tan.zi 

""" 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Sep 30 11:56:34 2019 

 

@author: tan.zi 

""" 

 

import numpy as np 

from scipy.stats import genpareto as gpd 

from scipy.io import netcdf 

import statsmodels.api as sm  

import pandas as pd 

from scipy.signal import argrelextrema 

import os 

import urllib.request, urllib.error 

from http.cookiejar import CookieJar 

from netCDF4 import Dataset 

from datetime import datetime 
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from datetime import date 

 

def LOCA_download(userLat, userLong, saveLocation, GCMs, rcp): 

     

    odir =saveLocation 

    if not os.path.exists(odir): os.makedirs(odir) 

 

    minLat = str(round(userLat - 0.05, 6)) 

    minLong = str(round(userLong - 0.05, 6)) 

    maxLat = str(round(userLat + 0.05, 6)) 

    maxLong = str(round(userLong + 0.05, 6)) 

 

 

    line = "Downloading historical LOCA data\n" 

 

    # HISTORICAL 

    scn = GCMs 

     

    if scn == 'CCSM4': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r6i1p1_historical&' 

     

    elif scn == 'GISS-E2-H' and rcp == 'rcp85': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r6i1p1_historical&' 

    elif scn == 'GISS-E2-H' and rcp == 'rcp45': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r6i1p1_historical&' 

     

    elif scn == 'GISS-E2-R' and rcp == 'rcp85': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r6i1p1_historical&' 

    elif scn == 'GISS-E2-R' and rcp == 'rcp45': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r6i1p1_historical&'     

     

    elif scn == 'EC-EARTH' and rcp == 'rcp85': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r1i1p1_historical&' 

         

    else: 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_historical?var=pr_' + scn + '_r1i1p1_historical&' 

    url = url + 'north=' + maxLat + '&west=' + minLong + '&east=' + maxLong + '&south=' + minLat 

    url = url + '&disableProjSubset=on&horizStride=1&time_start=1950-01-

01T12%3A00%3A00Z&time_end=2005-12-31T12%3A00%3A00Z&timeStride=1' 

    print(url) 

    out_name = 'historical_loca_' + str(userLat) + "_" + str(userLong) + "_" + scn + '_ppt' + '.nc' 

    local = os.path.join(odir,out_name) 

    if not os.path.exists(local): 

        try: 

            password_manager = urllib.request.HTTPPasswordMgrWithDefaultRealm() 

            cookie_jar = CookieJar() 

            opener = urllib.request.build_opener( 
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                    urllib.request.HTTPBasicAuthHandler(password_manager), 

                    urllib.request.HTTPCookieProcessor(cookie_jar)) 

            urllib.request.install_opener(opener) 

            request1 = urllib.request.Request(url) 

            response1 = urllib.request.urlopen(request1) 

            body1 = response1.read() 

            with open(local, 'wb') as f: 

                f.write(body1) 

                 

 

     

    # FUTURE 

     

    if scn == 'CCSM4': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r6i1p1_' + rcp + '&' 

     

    elif scn == 'GISS-E2-H' and rcp == 'rcp85': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r2i1p1_' + rcp + '&' 

    elif scn == 'GISS-E2-H' and rcp == 'rcp45': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r6i1p3_' + rcp + '&' 

     

    elif scn == 'GISS-E2-R' and rcp == 'rcp85': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r2i1p1_' + rcp + '&' 

    elif scn == 'GISS-E2-R' and rcp == 'rcp45': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r6i1p1_' + rcp + '&'  

     

    elif scn == 'EC-EARTH' and rcp == 'rcp45': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r8i1p1_' + rcp + '&'    

    elif scn == 'EC-EARTH' and rcp == 'rcp85': 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r2i1p1_' + rcp + '&' 

     

    else: 

        url = 'https://cida.usgs.gov/thredds/ncss/loca_future?var=pr_' + scn + '_r1i1p1_' + rcp + '&' 

    url = url + 'north=' + maxLat + '&west=' + minLong + '&east=' + maxLong + '&south=' + minLat 

    url = url + '&disableProjSubset=on&horizStride=1&time_start=2006-01-

01T12%3A00%3A00Z&time_end=2100-12-31T12%3A00%3A00Z&timeStride=1' 

    print(url) 

    out_name = rcp + '_loca_' + str(userLat) + "_" + str(userLong) + "_" + scn + '_ppt' + '.nc' 

    local = os.path.join(odir,out_name) 

    if not os.path.exists(local): 

        try: 

            password_manager = urllib.request.HTTPPasswordMgrWithDefaultRealm() 

            cookie_jar = CookieJar() 

            opener = urllib.request.build_opener( 

                    urllib.request.HTTPBasicAuthHandler(password_manager), 

                    urllib.request.HTTPCookieProcessor(cookie_jar)) 

            urllib.request.install_opener(opener) 
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            request1 = urllib.request.Request(url) 

            response1 = urllib.request.urlopen(request1) 

            body1 = response1.read() 

            with open(local, 'wb') as f: 

                f.write(body1) 

         

 

def Pull_RCM_DailyRainfall(netcdf_folder,GCM_csv_folder,userLat,userLong,GCMs,rcp): 

 

        loca_repo = netcdf_folder 

         

        scenario=GCMs 

        historical_file = loca_repo + "\\historical_loca_" + str(userLat) + "_" + str(userLong) + "_" + scenario + 

"_ppt.nc" 

        rcp_file = loca_repo + "\\" + rcp + "_loca_" + str(userLat) + "_" + str(userLong) + "_" + scenario + 

"_ppt.nc" 

        mhistf = netcdf.netcdf_file(historical_file, 'r') 

        mfutf = netcdf.netcdf_file(rcp_file, 'r') 

 

 

        s=datetime(1950,1,1) 

        e=datetime(2005,12,31) 

        ts=pd.date_range(s,e,freq='d') 

     

 

        if scenario == 'CCSM4': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_historical' 

            t1=mhistf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-H' and rcp == 'rcp85': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_historical' 

            t1=mhistf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-H' and rcp == 'rcp45': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_historical' 

            t1=mhistf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-R' and rcp == 'rcp45': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_historical' 

            t1=mhistf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-R' and rcp == 'rcp85': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_historical' 

            t1=mhistf.variables[scenariocall][:,0,1] 

        else: 

            scenariocall = 'pr_' + scenario + '_r1i1p1_historical' 

            t1=mhistf.variables[scenariocall][:,0,1] 

         

        #check units and scale factor and convert to mm 

        if mhistf.variables[scenariocall].units in ['kg m-2 s-1',b'kg m-2 s-1']: 

            t1=t1*86400 
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        if hasattr(mhistf.variables[scenariocall], 'scale_factor'): 

            t1=t1*mhistf.variables[scenariocall].scale_factor 

        t1=t1*0.0393701 

        rcm_hist_df=pd.DataFrame(columns=['Date','P_inch'])  

        rcm_hist_df['Date']=pd.Series(ts)  

        rcm_hist_df['P_inch']=pd.Series(t1)  

        rcm_hist_df.to_csv(GCM_csv_folder+'\\'+scenario+'_hist_'+ str(userLat) + "_" + str(userLong)+'.csv', 

index=False)  

         

        fut_yr_start=2006 

        fut_yr_end=2100 

        sp=datetime(fut_yr_start,1,1) 

        ep=datetime(fut_yr_end,12,31) 

        tsp=pd.date_range(sp,ep,freq='d') 

         

        if scenario == 'CCSM4': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-H' and rcp == 'rcp45': 

            scenariocall = 'pr_' + scenario + '_r6i1p3_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-H' and rcp == 'rcp85': 

            scenariocall = 'pr_' + scenario + '_r2i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-R' and rcp == 'rcp45': 

            scenariocall = 'pr_' + scenario + '_r6i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        elif scenario == 'GISS-E2-R' and rcp == 'rcp85': 

            scenariocall = 'pr_' + scenario + '_r2i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        elif scenario == 'EC-EARTH' and rcp =='rcp45': 

            scenariocall = 'pr_' + scenario + '_r8i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        elif scenario == 'EC-EARTH' and rcp =='rcp85': 

            scenariocall = 'pr_' + scenario + '_r2i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

        else: 

            scenariocall = 'pr_' + scenario + '_r1i1p1_' + rcp 

            tp1=mfutf.variables[scenariocall][:,0,1] 

         

 

         

        if mfutf.variables[scenariocall].units in ['kg m-2 s-1',b'kg m-2 s-1']: 

            tp1=tp1*86400 

        if hasattr(mfutf.variables[scenariocall], 'scale_factor'): 

            tp1=tp1*mfutf.variables[scenariocall].scale_factor 
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        tp1=tp1*0.0393701 

        rcm_fut_df=pd.DataFrame(columns=['Date','P_inch'])  

        rcm_fut_df['Date']=pd.Series(tsp)  

        rcm_fut_df['P_inch']=pd.Series(tp1)  

        rcm_fut_df.to_csv(GCM_csv_folder+'\\'+scenario+'_'+rcp+'_'+ str(userLat) + "_" + 

str(userLong)+'.csv', index=False)  

             

 

def Screen_GCMs(site_id,Prism_file,GCM_list, Screen_folder,userLat,userLong, fut_yr_st,fut_yr_ed): 

 

 

    lat_ind=int((userLat-23.40625)/0.0625)   # LOCA dataset lat starts at 23.40625 with 0.0625 interval 

    lon_ind=int(((360+userLong)-234.03125)/0.0625)  # LOCA dataset long starts at 234.03125 with 

0.0625 interval 

     

    ratio_dict={} 

    ratior45_dict={} 

    ratior85_dict={} 

   

    

    hist_data =np.genfromtxt(Prism_file,delimiter=",",missing_values=" ",skip_header=1)    

    hist_p=hist_data[hist_data>0] 

    hist_90th=np.quantile(hist_p,q=0.9) 

    hist_lg_90th=sum(hist_p[hist_p>=hist_90th])/len(hist_data)   

     

    fut_url='http://cida.usgs.gov/thredds/dodsC/loca_future' 

    fut_dataset = Dataset(fut_url) 

     

     

    for GCM in GCM_list:         

        

        # FUTURE 

        first_date = date(2006, 1, 1) 

        s_date = date(fut_yr_st, 1, 1) 

        e_date = date(fut_yr_ed, 12, 31) 

        delta_s = s_date - first_date 

        delta_e=e_date-first_date 

         

        rcp='rcp45' 

         

        if scn == 'CCSM4': 

            var = 'pr_' + scn + '_r6i1p1_' + rcp 

        elif scn == 'GISS-E2-H': 

            var = 'pr_' + scn +  '_r6i1p3_' +rcp 

        elif scn == 'GISS-E2-R': 

            var = 'pr_' + scn +  '_r6i1p1_'+rcp  

        elif scn == 'EC-EARTH': 
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            var = 'pr_' + scn +  '_r8i1p1_'+rcp  

        else: 

            var = 'pr_' + scn + '_r1i1p1_'+rcp 

 

        print('rcp45_'+GCM) 

         

        futr45_slice=fut_dataset.variables[var] 

         

        futr45_data=futr45_slice[delta_s.days:delta_e.days,lat_ind,lon_ind].data 

         

        futr45_p=futr45_data[futr45_data>0] 

 

        if len(futr45_p) and len (hist_p)>0: 

             

            if futr45_slice.units=='kg m-2 s-1': 

                futr45_p=futr45_p*86400 

           

            futr45_lg_90th=sum(futr45_p[futr45_p>=hist_90th])/len(futr45_data) 

            change_ratio=(futr45_lg_90th-hist_lg_90th)/hist_lg_90th 

            ratio_dict.update({scn+'_'+rcp:change_ratio}) 

            ratior45_dict.update({scn+'_'+rcp:change_ratio}) 

 

        rcp='rcp85' 

         

        if scn == 'CCSM4': 

            var = 'pr_' + scn + '_r6i1p1_' + rcp 

        elif scn == 'GISS-E2-H': 

            var = 'pr_' + scn +  '_r2i1p1_' +rcp 

        elif scn == 'GISS-E2-R': 

            var = 'pr_' + scn +  '_r2i1p1_'+rcp  

        elif scn == 'EC-EARTH': 

            var = 'pr_' + scn +  '_r2i1p1_'+rcp  

        else: 

            var = 'pr_' + scn + '_r1i1p1_'+rcp 

         

        print('rcp85_'+GCM) 

        futr85_slice=fut_dataset.variables[var] 

         

        futr85_data=futr85_slice[delta_s.days:delta_e.days,lat_ind,lon_ind].data 

         

        futr85_p=futr85_data[futr85_data>0] 

         

        if len(futr85_p) and len (hist_p)>0: 

         

            if futr85_slice.units=='kg m-2 s-1': 

                futr85_p=futr85_p*86400 
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            futr85_lg_90th=sum(futr85_p[futr85_p>=hist_90th])/len(futr85_data) 

            change_ratio=(futr85_lg_90th-hist_lg_90th)/hist_lg_90th 

            ratio_dict.update({scn+'_'+rcp:change_ratio}) 

            ratior85_dict.update({scn+'_'+rcp:change_ratio}) 

             

        # return the 10th, 50th, 90th percentile models 

    if bool(ratio_dict):     

        gcm90=list(ratio_dict.keys())[np.abs(list(ratio_dict.values()) - 

np.percentile(list(ratio_dict.values()),90)).argmin()] 

        r45gcm50=list(ratior45_dict.keys())[np.abs(list(ratior45_dict.values()) - 

np.percentile(list(ratior45_dict.values()),50)).argmin()] 

        r85gcm50=list(ratior85_dict.keys())[np.abs(list(ratior85_dict.values()) - 

np.percentile(list(ratior85_dict.values()),50)).argmin()] 

        gcm10=list(ratio_dict.keys())[np.abs(list(ratio_dict.values()) - 

np.percentile(list(ratio_dict.values()),10)).argmin()] 

    else: 

        gcm90='' 

        r45gcm50='' 

        r85gcm50='' 

        gcm10='' 

    print(gcm10,r45gcm50,r85gcm50,gcm90) 

     

    # OUTPUT screen results 

    with open(Screen_folder+'\\'+str(site_id)+'_Screen'+'_'+str(fut_yr_st)+'_'+str(fut_yr_ed)+'.csv','w') as f: 

    writer = csv.writer(f) 

    for key, value in ratio_dict.items(): 

        writer.writerow([key, value]) 

             

    return ([gcm10,r45gcm50,r85gcm50,gcm90]) 

         

 

def Define_Threshold(raints): 

 

    rain=np.sort(raints[raints>0]) 

    

    Ee=[] 

    var_E=[] 

    weights=[] 

    for i in range(len(rain)-10): 

        e=rain-rain[i] 

        Ee.append(np.mean(e[e>0])) 

        var_E.append(np.var(e[i:])) 

        weights.append((len(rain)-i)/var_E[i]) 

 

    wls_results=[] 

     

    for j in range(len(rain)-20):        
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        # WLS regression 

        WLS =sm.WLS( Ee[j:],sm.add_constant(rain[j:-10]), sample_weight=weights[j:]) 

        res_wls=WLS.fit() 

        y_prime=res_wls.fittedvalues 

        wmse=sum(weights[j:]*(y_prime-Ee[j:])**2)/len(weights[j:]) 

        wls_results.append(np.hstack((j,wmse,res_wls.params[0],res_wls.params[1]))) 

 

    wls_df=pd.DataFrame(wls_results, columns=('Index','WMSE','intercept','slope')) 

    minm = argrelextrema(np.array(wls_df['WMSE']), np.less)   # find local minimum 

    threshold=rain[int(minm[0][0])] 

    slope=wls_df['slope'][int(minm[0][0])] 

    intercept=wls_df['intercept'][int(minm[0][0])]   

    shape=slope/(1+slope) 

    scale=intercept*(1-shape)+shape*threshold 

 

    return threshold,shape,scale 

  

 

def GPD_fit(Prism_file,GCM_csv_folder,Scenlist,userLat,userLong,GDP_fit_file, fut_yr_st,fut_yr_ed):    

 

     

    data=np.genfromtxt(Prism_file,delimiter=",",missing_values=" ",skip_header=1) 

    threshold,shape0,scale0=Define_Threshold(data[:,1]) 

     

    rain=np.sort(data[data[:,1]>0,1]) 

    hist_90th=np.quantile(rain,q=0.9) 

 

     

    GPD_fit_list=[] 

    GPD_fit_list.append(['PRISM',hist_90th]) 

     

    for scn in Scenlist: 

        for rcp in ['rcp45','rcp85']: 

            print(scn) 

            GCM=scn.split('_')[0]   

            gcmcon_file=GCM_csv_folder+'\\'+siteID+'_'+GCM+'_historical'+'.csv' 

            gcmfut_file=GCM_csv_folder+'\\'+siteID+'_'+GCM+'_'+rcp+'.csv' 

            gcm_con_daily_df=pd.read_csv(gcmcon_file) 

            gcm_con_daily_df['year'] = pd.DatetimeIndex(gcm_con_daily_df['Date']).year 

            # 30 years of historical modeling results 

            gcm_con_daily=np.array(gcm_con_daily_df['P_inch'] )             

            gcm_con=np.sort(gcm_con_daily[gcm_con_daily>0]) 

             

 

            gcm_fut_daily_df=pd.read_csv(gcmfut_file) 

            gcm_fut_daily_df['year'] = pd.DatetimeIndex(gcm_fut_daily_df['Date']).year 
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            # 30 years of future modeling results 

            gcm_fut_daily=np.array(gcm_fut_daily_df[(gcm_fut_daily_df['year']>=fut_yr_st) & 

(gcm_fut_daily_df['year']<=fut_yr_ed)]['P_inch'] ) 

            gcm_fut=np.sort(gcm_fut_daily[gcm_fut_daily>0]) 

 

 

         

             

            gcm_con_t=gcm_con[gcm_con>threshold] 

            gcm_fut_t=gcm_fut[gcm_fut>threshold]   

            prob_threshold=len(gcm_fut_t)/len(gcm_fut) 

             

            # fit GDP with the initial guess values from historical data 

            gcm_con_param=gpd.fit(gcm_con_t,shape0, loc=threshold, scale=scale0) 

            gcm_fut_param=gpd.fit(gcm_fut_t,shape0, loc=threshold, scale=scale0) 

              

            ################################################################## 

            # conditional distribution matching 

            ################################################################## 

        

            # adjustment 1 

            

P_fut_adj1=gpd.ppf(gpd.cdf(gcm_fut_t,gcm_fut_param[0],threshold,gcm_fut_param[2]),shape0,threshold,

scale0); 

             

            # adjustment 2 

            

P_fut_adj2=gpd.ppf(gpd.cdf(gcm_fut_t,gcm_fut_param[0],threshold,gcm_fut_param[2]),gcm_con_param[

0],threshold,gcm_con_param[2]);     

         

            # adjusted stn future daily data 

            P_fut=gcm_fut_t+P_fut_adj1- P_fut_adj2;  # conditional distribution only for x > threshold 

        

        

        # Covert probability from truncated dataset to full dataset with conditional probability  

            stnfut_param=gpd.fit(P_fut,gcm_fut_param[0],loc=threshold,scale=gcm_fut_param[2]) 

             

            x=np.linspace(min(P_fut),max(P_fut),100) 

             

            cdf_fit=gpd.cdf(x,*stnfut_param)  

             

            model_fut_prob=1-prob_threshold*(1-cdf_fit) 

             

            st_fut_ary=np.transpose(np.vstack((x,model_fut_prob))) 

             

            st_fut_df=pd.DataFrame(st_fut_ary,columns=('Rain','Prob')) 
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            hi_prob=model_fut_prob[model_fut_prob > 0.9].min() 

             

            low_prob=model_fut_prob[model_fut_prob < 0.9].max() 

             

            p90_plus=float(st_fut_df[st_fut_df['Prob']==hi_prob]['Rain']) 

             

            p90_minus=float(st_fut_df[st_fut_df['Prob']==low_prob]['Rain']) 

             

            st_90th_fut_p=(0.9-low_prob)/(hi_prob-low_prob)*(p90_plus-p90_minus)+p90_minus 

             

            GPD_fit_list.append([GCM+'_'+rcp,st_90th_fut_p]) 

     

    pd.DataFrame(GPD_fit_list,columns=['Scenarios','P_90th']).to_csv(GDP_fit_file,index=None) 

     

         

     

 

 

     

 

def main(netcdf_folder,GCM_csv_folder,Prism_folder,sites_file,Screen_folder,results_folder): 

#    The streamlined function to batch process the POT analysis of all MD sites. 

#    First, screen GCMs based on each site  (Screen_GCMs) 

#    Then, based on the screening results, pull and process GCM data  (LOCA_download, 

Pull_RCM_Dailyrainfall) 

#    Last, project future changes to 90th rainfall event  (GDP_fit), threshold and GDP parameters were 

estimated with Define_Threshold function. 

     

     

     

#    main(netcdf_folder,GCM_csv_folder,Prism_folder,sites_file,Screen_folder,results_folder) 

#    netcdf_folder=r'C:\Tan\Projects\CBT\POT\data_test\Loca_data' 

#    GCM_csv_folder=r'C:\Tan\Projects\CBT\POT\data_test\GCM_CSV' 

#    Prism_folder=r'C:\Tan\Projects\CBT\POT\data_test\PRISM_data' 

#    sites_file=r'C:\Tan\Projects\CBT\POT\data_test\MD_sites2.csv' 

#    Screen_folder=r'C:\Tan\Projects\CBT\POT\data_test\Screen_results' 

#    results_folder=r'C:\Tan\Projects\CBT\POT\data_test\Results' 

#     

     

    GCM_list=['ACCESS1-0','ACCESS1-3','CCSM4','CESM1-BGC','CESM1-CAM5','CMCC-CMS','CMCC-

CM', 

            'CNRM-CM5','CSIRO-Mk3-6-0','CanESM2','EC-EARTH','FGOALS-g2','GFDL-CM3', 

             'GFDL-ESM2G','GFDL-ESM2M','GISS-E2-H','GISS-E2-R','HadGEM2-AO','HadGEM2-CC', 

             'HadGEM2-ES','IPSL-CM5A-LR','IPSL-CM5A-MR','MIROC-ESM-CHEM','MIROC-ESM', 

             'MIROC5','MPI-ESM-LR','MPI-ESM-MR','MRI-CGCM3','NorESM1-M','bcc-csm1-1-m']     
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    sites_df=pd.read_csv(sites_file) 

    for idx,site in sites_df.iterrows(): 

        userLat=float(site['Latitude']) 

        userLong=float(site['Longitude']) 

        site_id=site['StationID'] 

        print(site['StationID']) 

 

         

        Prism_file=Prism_folder+'\\PRISM_'+str(float(site.Latitude))+'_'+str(float(site.Longitude)) + '_ppt.csv' 

         

        fut_yr_st=2040 

        fut_yr_ed=2069 

         

        Scenlist=[] 

        Scenlist=Screen_GCMs(site_id,Prism_file,GCM_list, Screen_folder,userLat,userLong, 

fut_yr_st,fut_yr_ed) 

         

        if len(Scenlist[0])>0: 

        #downlaod and processing LOCA data 

            for scn in Scenlist: 

                GCM=scn.split('_')[0] 

                rcp=scn.split('_')[1]              

                LOCA_download(userLat, userLong, netcdf_folder, GCM, rcp) 

                Pull_RCM_DailyRainfall(netcdf_folder,GCM_csv_folder,userLat,userLong,GCM,rcp)        

           

     

            GDP_fit_file=results_folder+'\\'+str(site['Station ID'])+'_2055.csv' 

            GPD_fit(Prism_file,GCM_csv_folder,Scenlist,userLat,userLong,GDP_fit_file, fut_yr_st,fut_yr_ed) 

 

        fut_yr_st=2070 

        fut_yr_ed=2099 

         

        Scenlist=[] 

        Scenlist=Screen_GCMs(site_id,Prism_file,GCM_list, Screen_folder,userLat,userLong, 

fut_yr_st,fut_yr_ed) 

         

        if len(Scenlist[0])>0: 

        #downlaod and processing LOCA data 

            for scn in Scenlist: 

                GCM=scn.split('_')[0] 

                rcp=scn.split('_')[1]              

                LOCA_download(userLat, userLong, netcdf_folder, GCM, rcp) 

                Pull_RCM_DailyRainfall(netcdf_folder,GCM_csv_folder,userLat,userLong,GCM,rcp)        

           

     

            GDP_fit_file=results_folder+'\\'+str(site['Station ID'])+'_2085.csv' 
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            GPD_fit(Prism_file,GCM_csv_folder,Scenlist,userLat,userLong,GDP_fit_file, fut_yr_st,fut_yr_ed) 

             

             

if __name__ == '__main__': 

    main(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5],sys.argv[6]) 

A-3.  SWMM SIMULATIONS 

Separate code is provided for the simulations with and without the BMP in place.   

1. SWMM_IDF_NoBMP_Looped.py 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Mar 27 15:05:13 2020 

 

@author: PETER.KWON 

""" 

 

import sys 

import io 

import ftplib  

import os 

import os, math 

from scipy.optimize import minimize 

import time 

import datetime as dt 

import pandas as pd 

import numpy as np 

from pandas import ExcelWriter 

from pyswmm import Simulation, Nodes, LidGroups, Subcatchments 

 

def main(): 

     

    ###USER_INPUT### 

    file_to_use = 

r"C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_Code\Input\SWMM_Input_Gene

ration_Launch_Loop_Input.xlsx" 

 BMP = 'Bioret_NoBMP' 

     

    #import POT Rainfall estimates 

    IDF_INPUT = pd.read_excel(file_to_use, sheet_name = 'IDF') 

    #Cumulative rainfall tab that will become Rainfall.dat export for SWMM input 

    CUM_RATIO = pd.read_excel(file_to_use, sheet_name = 'CUM_RATIO') 

    #type of BMP to run. BMP_TYPE sheet should have only one item selected. 

    BMP_TYPE = pd.read_excel(file_to_use, sheet_name = 'BMP_TYPE') 

    #Station Inputs - WQ_Depth, CPv_Time, 1yr_24hr, and 100yr_24hr values by station. 
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    #Bioretention uses WQ_Depth, Wet Ponds uses all columns 

    STATIONINPUTS = pd.read_excel(file_to_use, sheet_name = 'STATION_INPUTS') 

    #Create List of Percent Impervious scenarios to analyze 

    P_IMP = [25,50,80] 

    #Create List of IDF scenarios 

    IDF_SCENARIO = ['1-yr 24-hr','2-yr 24-hr','10-yr 24-hr','100-yr 24-hr'] 

 

    ###End User Inputs### 

     

    ###In-code processing### 

     

    #Create list of loopable index 

    ROWCOUNT = IDF_INPUT['RowCount'].tolist() 

     

    #Prepare a dataframe for the final output depending on BMP type 

    if BMP == 'Bioret_NoBMP': 

        column_names = 

['StationName','StationID','Year','GCM_RCP','BMP_Type','ANALYSIS_Type','RAINFALL_DEPTH', 

                        'EVENT_Type','P_IMPERV','Site_peak_flow_cfs','Site_volume_cf'] 

    if BMP == 'WetP_NoBMP': 

        column_names = 

['StationName','StationID','Year','GCM_RCP','BMP_Type','ANALYSIS_Type','RAINFALL_DEPTH', 

                        'EVENT_Type','P_IMPERV','Site_peak_flow_cfs','Site_volume_cf'] 

    DF_OUTPUT = pd.DataFrame(columns=column_names)     

     

    #Start loop over each row 

    for a, aa in enumerate(ROWCOUNT): 

        STATION_NAME = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'Atlas14_Station'].item() 

        STATION_ID = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'Atlas14_StationID'].item() 

        YEAR = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'Year'].item() 

        GCM_RCP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'GCM_RCP'].item() 

        WQ_DEPTH = 

STATIONINPUTS.loc[STATIONINPUTS['StationID']==STATION_ID,'WQ_Depth'].item() 

        #Start loop for 4 rainfall eventss 

        for b,bb in enumerate(IDF_SCENARIO): 

            if bb == '1-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'1-yr 24-hr'].item() 

            if bb == '2-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'2-yr 24-hr'].item() 

            if bb == '10-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'10-yr 24-hr'].item() 

            if bb == '100-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'100-yr 24-hr'].item() 

            #Create Rainfall.dat file 

            CUM_RATIO['PRECIP'] = PRECIP 

            CUM_RATIO['CUM_RAINFALL'] = np.nan 

            #print(aa) 
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            #print(CUM_RATIO.columns) 

            RATIO_LIST = CUM_RATIO.RATIO.tolist() 

            PRECIP_LIST = CUM_RATIO.PRECIP.tolist() 

            CUM_RATIO['CUM_RAINFALL'] = np.multiply(RATIO_LIST,PRECIP_LIST) 

            CUM_RATIO = CUM_RATIO.round({"CUM_RAINFALL":6}) 

            RAINFALL = 

CUM_RATIO[['STATION_ID','YEAR','MONTH','DAY','HOUR','MINUTE','CUM_RAINFALL']] 

            if BMP == 'Bioret_NoBMP': 

                

RAINFALL.to_csv(r'C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_Code\Proces

sing\Bioret_NoBMP\Rainfall.dat',sep=' ',header=False, index=False) 

            if BMP == 'WetP_NoBMP': 

                

RAINFALL.to_csv(r'C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_Code\Proces

sing\WetP_NoBMP\Rainfall.dat',sep=' ',header=False, index=False)                 

             

            #loop grabbing SWMM input file created by Scott Job for each percent impervious value 

            for c, cc in enumerate(P_IMP): 

                if BMP == 'Bioret_NoBMP': 

                    folder_name = 

r'C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_Code\Processing\Bioret_NoBMP

' 

                    os.chdir(folder_name) 

                    #.inp files for SWMM provided by Scott Job 

                    if cc == 25: 

                        infile = 'SWMM_Bioret_Imp25.inp' 

                    if cc == 50: 

                        infile = 'SWMM_Bioret_Imp50.inp' 

                    if cc == 80: 

                        infile = 'SWMM_Bioret_Imp80.inp' 

                    #Design parameters provided by Scott Job 

                    Rv = 0.05 + 0.009 * cc                          # volumetric runoff coefficient 

                    SiteArea = 1                                    # acres 

                    WQv = WQ_DEPTH * Rv * SiteArea * 43560 / 12     # WQ_DEPTH inches, WQv cu ft 

                    Bio_pd = 1                                      # Ponding depth above media, ft 

                    Bio_footprint = WQv / Bio_pd 

                if BMP == 'WetP_NoBMP': 

                    folder_name = 

r'C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_Code\Processing\WetP_NoBMP' 

                    os.chdir(folder_name) 

 

                    #.inp files for SWMM provided by Scott Job 

                    if cc == 25: 

                        infile = 'SWMM_WetPond_Imp25.inp' 

                    if cc == 50: 

                        infile = 'SWMM_WetPond_Imp50.inp' 

                    if cc == 80: 
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                        infile = 'SWMM_WetPond_Imp80.inp' 

 

                #Run pyswmm simulation 

                if BMP == 'Bioret_NoBMP': 

                    with Simulation(infile) as sim: 

                        sc1 = Subcatchments(sim)["SC1"] 

                        for step in sim: 

                            pass 

                        site_peakflow = sc1.statistics.get('peak_runoff_rate') 

                        site_volume = sc1.statistics.get('runoff') 

                         

                        sim.close() 

                     

                    # Report    Statistic                Value 

                    #           Site peak flow (cfs)     site_peakflow 

                    #           Site volume (cf)         site_volume 

                    # 

                    # For BMP_Type, report "Bioretention site, no BMP" 

                if BMP == 'WetP_NoBMP': 

                    with Simulation(infile) as sim: 

                        sc1 = Subcatchments(sim)["SC1"] 

                        for step in sim: 

                            pass 

                        site_peakflow = sc1.statistics.get('peak_runoff_rate') 

                        site_volume = sc1.statistics.get('runoff') 

                         

                        sim.close() 

                    # Report    Statistic                Value 

                    #           Site peak flow (cfs)     site_peakflow 

                    #           Site volume (cf)         site_volume 

                    # 

                    # For BMP_Type, report "Wet Pond site, no BMP" 

                #Create row to iterate into datafrme 

                if BMP == "Bioret_NoBMP": 

                    ROW_TO_ADD = [STATION_NAME,STATION_ID,YEAR,GCM_RCP,"Bioretention site, no 

BMP",ANALYSIS,PRECIP,bb,cc,site_peakflow,site_volume] 

                if BMP == "WetP_NoBMP": 

                    ROW_TO_ADD = [STATION_NAME,STATION_ID,YEAR,GCM_RCP,"Wet Pond site, no 

BMP",ANALYSIS,PRECIP,bb,cc,site_peakflow,site_volume] 

                ROW_TO_ADD = pd.Series(ROW_TO_ADD,index=DF_OUTPUT.columns) 

                #Loop for 3 percent impervious conditions (25%,50%,80%) 

                if c == 0: 

                    DF_OUTPUT_FINAL = DF_OUTPUT.append(ROW_TO_ADD,ignore_index=True) 

                if c > 0: 

                    DF_OUTPUT_FINAL = DF_OUTPUT_FINAL.append(ROW_TO_ADD,ignore_index=True) 

            #Loop for 4 rainfall events (1,2,10,100 years 24-hr events) 

            if b == 0: 
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                DF_OUTPUT_FINAL2 = DF_OUTPUT_FINAL 

            if b > 0: 

                DF_OUTPUT_FINAL2 = 

DF_OUTPUT_FINAL2.append(DF_OUTPUT_FINAL,ignore_index=True) 

        #Loop for each row of input design storm information 

        if a == 0: 

            DF_OUTPUT_FINAL3 = DF_OUTPUT_FINAL2 

        if a > 0: 

            DF_OUTPUT_FINAL3 = 

DF_OUTPUT_FINAL3.append(DF_OUTPUT_FINAL2,ignore_index=True) 

    #Export dataframe to master output 

    if BMP == 'Bioret_NoBMP': 

        

DF_OUTPUT_FINAL3.to_csv(r'C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_C

ode\Output\SWMM_IDF_OUTPUT_SUMMARY_BIORET_NOBMP.csv',index=False) 

    if BMP == 'WetP_NoBMP': 

        

DF_OUTPUT_FINAL3.to_csv(r'C:\Users\peter.kwon\Projects\Chesapeake_Bay_Trust\Python\Looping_C

ode\Output\SWMM_IDF_OUTPUT_SUMMARY_WETP_NOBMP.csv',index=False) 

    ###End In-code processing### 

     

if __name__=="__main__": 

    main() 

 

2. SWMM_IDF_BMP_Looped.py 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Mar 27 15:05:13 2020 

 

@author: PETER.KWON 

""" 

 

#import sys 

#import io 

#import ftplib 

#import os 

import os, math 

from scipy.optimize import minimize 

import time 

import datetime as dt 

import pandas as pd 

import numpy as np 

#from pandas import ExcelWriter 

from pyswmm import Simulation, Nodes, LidGroups 

 

def main(): 
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    ###USER_INPUT### 

    file_to_use = r"C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Input\SWMM_Input_Generation_Launch_Loop_Input.xlsx" 

 BMP = 'Bioretention' 

 

    #import POT Rainfall estimates 

    IDF_INPUT = pd.read_excel(file_to_use, sheet_name = 'IDF') 

    #Cumulative rainfall tab that will become Rainfall.dat export for SWMM input 

    CUM_RATIO = pd.read_excel(file_to_use, sheet_name = 'CUM_RATIO') 

    #Station Inputs - WQ_Depth, CPv_Time, 1yr_24hr, and 100yr_24hr values by station. 

    #Bioretention uses WQ_Depth, Wet Ponds uses all columns 

    STATIONINPUTS = pd.read_excel(file_to_use, sheet_name = 'STATION_INPUTS') 

    #Create List of Percent Impervious scenarios to analyze 

    P_IMP = [25,50,80] 

    #output file 

    outfile = r"C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Output\SWMM_IDF_OUTPUT_SUMMARY_BIORETENTION.csv" 

    #Create List of IDF scenarios 

    IDF_SCENARIO = ['1-yr 24-hr','2-yr 24-hr','10-yr 24-hr','100-yr 24-hr'] 

 

    ###End User Inputs### 

 

    ###In-code processing### 

 

    #Create list of loopable index 

    ROWCOUNT = IDF_INPUT['RowCount'].tolist() 

 

    #Prepare a dataframe for the final output depending on BMP type 

    if BMP == 'Bioretention': 

        column_names = 

['StationName','StationID','Year','GCM_RCP','BMP_Type','P_IMPERV','ANALYSIS_Type','EVENT_Type', 

                        'STORM_Depth','Site_PeakFlow_cfs','Overflow_cf','Underdrain_outflow_cf'] 

    if BMP == 'Wet Pond': 

        column_names = 

['StationName','StationID','Year','GCM_RCP','BMP_Type','P_IMPERV','ANALYSIS_Type','EVENT_Type', 

                        'STORM_Depth','CPv_stage_ft','Site_PeakFlow_cfs','Site_volume_cf'] 

    DF_OUTPUT = pd.DataFrame(columns=column_names) 

 

    #Start loop over each row 

    for a, aa in enumerate(ROWCOUNT): 

        STATION_NAME = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'Atlas14_Station'].item() 

        STATION_ID = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'Atlas14_StationID'].item() 

        YEAR = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'Year'].item() 

        GCM_RCP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'GCM_RCP'].item() 

        WQ_DEPTH = 

STATIONINPUTS.loc[STATIONINPUTS['StationID']==STATION_ID,'WQ_Depth'].item() 
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        #Start loop for 4 rainfall eventss 

        for b,bb in enumerate(IDF_SCENARIO): 

            if bb == '1-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'1-yr 24-hr'].item() 

            if bb == '2-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'2-yr 24-hr'].item() 

            if bb == '10-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'10-yr 24-hr'].item() 

            if bb == '100-yr 24-hr': 

                PRECIP = IDF_INPUT.loc[IDF_INPUT['RowCount']==aa,'100-yr 24-hr'].item() 

            #Create Rainfall.dat file 

            CUM_RATIO['PRECIP'] = PRECIP 

            CUM_RATIO['CUM_RAINFALL'] = np.nan 

            RATIO_LIST = CUM_RATIO.RATIO.tolist() 

            PRECIP_LIST = CUM_RATIO.PRECIP.tolist() 

            CUM_RATIO['CUM_RAINFALL'] = np.multiply(RATIO_LIST,PRECIP_LIST) 

            CUM_RATIO = CUM_RATIO.round({"CUM_RAINFALL":6}) 

            #Python lesson: DF[COLUMN]*DF[COLUMN] runs into a KeyError due to pandas trying to 

            #identify the column name, not the column contents. Use format, DF.COLUMNS 

            #CUM_RATIO['CUM_RAINFALL'] = CUM_RATIO['CUM_RATIO']*CUM_RATIO['PRECIP'] 

            #CUM_RATIO['CUM_RAINFALL'] = '{0:.6f}'.format(CUM_RATIO['CUM_RAINFALL']) 

            RAINFALL = 

CUM_RATIO[['STATION_ID','YEAR','MONTH','DAY','HOUR','MINUTE','CUM_RAINFALL']] 

            if BMP == 'Bioretention': 

                RAINFALL.to_csv(r'C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Processing\Bioretention\Rainfall.dat',sep=' ',header=False, 

index=False) 

            if BMP == 'Wet Pond': 

                RAINFALL.to_csv(r'C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Processing\Wet_Pond\Rainfall.dat',sep=' ',header=False, 

index=False) 

 

            #loop grabbing SWMM input file created by Scott Job for each percent impervious value 

            for c, cc in enumerate(P_IMP): 

                if BMP == 'Bioretention': 

                    folder_name = r'C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Processing\Bioretention' 

                    os.chdir(folder_name) 

                    #.inp files for SWMM provided by Scott Job 

                    if (cc == 25) & (WQ_DEPTH == 0.9): 

                        infile = 'SWMM_0p9_25.inp' 

                    if (cc == 50) & (WQ_DEPTH == 0.9): 

                        infile = 'SWMM_0p9_50.inp' 

                    if (cc == 80) & (WQ_DEPTH == 0.9): 

                        infile = 'SWMM_0p9_80.inp' 

                    if (cc == 25) & (WQ_DEPTH == 1.0): 

                        infile = 'SWMM_1p0_25.inp' 
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                    if (cc == 50) & (WQ_DEPTH == 1.0): 

                        infile = 'SWMM_1p0_50.inp' 

                    if (cc == 80) & (WQ_DEPTH == 1.0): 

                        infile = 'SWMM_1p0_80.inp' 

                    #Design parameters provided by Scott Job 

                    Rv = 0.05 + 0.009 * cc                          # volumetric runoff coefficient 

                    SiteArea = 1                                    # acres 

                    WQv = WQ_DEPTH * Rv * SiteArea * 43560 / 12     # WQ_DEPTH inches, WQv cu ft 

                    Bio_pd = 1                                      # Ponding depth above media, ft 

                    Bio_footprint = WQv / Bio_pd 

                if BMP == 'Wet Pond': 

                    folder_name = r'C:\Temp\CBT Climate\SWMM\python\Looping_Code\Processing\Wet_Pond' 

                    os.chdir(folder_name) 

 

                    #Designate variables per Scott Job's code 

                    StationID = STATION_ID 

                    pcnt_imp = cc 

 

                    #Read in station, geometry, and design parameter files 

 

                    station_file = r"C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Input\StationLoookups.csv" 

                    df_station = pd.read_csv(station_file, index_col='StationID') 

                    WQ_dep = df_station.loc[StationID,'WQ_Depth'] 

                    CPv_time = df_station.loc[StationID,'CPv_Time'] 

 

                    geom_file = r"C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Input\WetPond_Geom.csv" 

                    df_geom = pd.read_csv(geom_file, index_col=['PcntImp','WQ_dep']) 

                    L1 = df_geom.loc[(pcnt_imp,WQ_dep),'L1'] 

                    H1 = df_geom.loc[(pcnt_imp,WQ_dep),'H1'] 

                    curve = df_geom.loc[(pcnt_imp,WQ_dep),'Stage00':] 

 

                    design_params_file = r"C:\Temp\CBT 

Climate\SWMM\python\Looping_Code\Input\Design_out.csv" 

                    df_design = pd.read_csv(design_params_file, index_col=['StationID','PcntImp']) 

                    vol_1yr = df_design.loc[(StationID,pcnt_imp),'1yr_vol'] 

                    peak_1yr = df_design.loc[(StationID,pcnt_imp),'1yr_peak'] 

                    peak100yr = df_design.loc[(StationID,pcnt_imp),'100yr_peak'] 

 

                    #Define site area, acres 

                    site_area = 25 

 

                    # power curves for MD Stormwater Manual nomengraph page D.11.3 

                    nomen = [[12,19.618,-0.911],[24,13.917,-0.965]] 

                    df_nomen = pd.DataFrame(nomen, columns = ['T','coeff','exp']) 

                    df_nomen.set_index('T', inplace = True, append = False) 
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                    coeff = df_nomen.loc[CPv_time,'coeff'] 

                    exp = df_nomen.loc[CPv_time,'exp'] 

 

                    # CPv storage volume calcs 

                    Qa = vol_1yr * 12 / site_area / 43560 

                    area_sqmi = site_area / 640 

                    qu = peak_1yr / Qa / area_sqmi 

                    qo_qi = coeff * qu ** exp 

                    k = [0.683,-1.43,1.64,-0.804] 

                    Vs_Vr = k[0] + k[1]*qo_qi + k[2]*qo_qi**2 + k[3]*qo_qi**3 

                    Vs_in = Vs_Vr * Qa 

                    Vs_cf = Vs_in / 12 * site_area * 43560 #storage volume needed in wet pond to address 

channel protection volume, less than channel protection volume, allows inflow for 24hr flow 

 

                    # Optimize on Vs_cf, L1, H1 --> return H2 

 

                    def opt(x,a,b,c): #x is variable to find, a,b,c are arguments 

                        result = abs(((a+a*x/b)*(2*(b+x))**2)/3 - (a*(2*b)**2)/3 - c) 

                        return result 

 

                    x0 = [20]   # starting value #value of 20 will vary #x0 is L2, item of optimization 

                    out = minimize(opt, x0, bounds = [(0,100)], args=(H1,L1,Vs_cf)) 

                    L2 = out.x[0] 

                    H2 = L2 * H1 / L1 

 

 

                    # Orifice diameter (ft) 

                    qo = qo_qi * peak_1yr 

                    O_diam = round(2 * math.sqrt(qo / (0.6 * math.pi * math.sqrt(2 * 32.2 * H2))), 4) 

 

                    # Weir width (ft) 

                    freeboard = 1  # ft 

                    W_width = round(peak100yr / 3 / freeboard ** 1.5, 2) 

 

 

                    # Build SWMM INP file 

 

                    N_1 = 0.011 

                    N_2 = 0.24 

                    S_1 = 0.05 

                    S_2 = 0.15 

                    PCT_S = 2 

                    SH = 8.6 

                    Kst = 0.06 

                    IMDx = 0.208 

                    interval = "0:06" 
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                    model_file = "SWMM.inp" 

                    SWMMinput = os.path.join(folder_name, model_file) 

                    with open(SWMMinput, 'w') as z: 

                        z.write('[TITLE]\n') 

                        z.write(';;Project Title/Notes\n\n') 

                        z.write('[OPTIONS]\n') 

                        z.write(';;Option\t\tValue\n') 

                        z.write('FLOW_UNITS           CFS\n') 

                        z.write('INFILTRATION         GREEN_AMPT\n') 

                        z.write('FLOW_ROUTING         DYNWAVE\n') 

                        z.write('LINK_OFFSETS         DEPTH\n') 

                        z.write('MIN_SLOPE            0\n') 

                        z.write('ALLOW_PONDING        NO\n') 

                        z.write('SKIP_STEADY_STATE    NO\n\n') 

                        z.write('START_DATE           12/24/2018\n') 

                        z.write('START_TIME           00:00:00\n') 

                        z.write('REPORT_START_DATE    12/24/2018\n') 

                        z.write('REPORT_START_TIME    00:00:00\n') 

                        z.write('END_DATE             12/26/2018\n') 

                        z.write('END_TIME             00:00:00\n') 

                        z.write('SWEEP_START          01/01\n') 

                        z.write('SWEEP_END            12/31\n') 

                        z.write('DRY_DAYS             0\n') 

                        z.write('REPORT_STEP          00:01:00\n') 

                        z.write('WET_STEP             00:00:10\n') 

                        z.write('DRY_STEP             00:00:10\n') 

                        z.write('ROUTING_STEP         00:00:01\n\n') 

                        z.write('INERTIAL_DAMPING     PARTIAL\n') 

                        z.write('NORMAL_FLOW_LIMITED  BOTH\n') 

                        z.write('FORCE_MAIN_EQUATION  H-W\n') 

                        z.write('VARIABLE_STEP        0.75\n') 

                        z.write('LENGTHENING_STEP     0\n') 

                        z.write('MIN_SURFAREA         12.566\n') 

                        z.write('MAX_TRIALS           8\n') 

                        z.write('HEAD_TOLERANCE       0.005\n') 

                        z.write('SYS_FLOW_TOL         5\n') 

                        z.write('LAT_FLOW_TOL         5\n') 

                        z.write('MINIMUM_STEP         0.5\n') 

                        z.write('THREADS              1\n\n') 

                        z.write('[EVAPORATION]\n') 

                        z.write(';;Data Source    Parameters\n') 

                        z.write(';;-------------- ----------------\n') 

                        z.write('CONSTANT          0.142\n') 

                        z.write('DRY_ONLY          YES\n\n') 

                        z.write('[RAINGAGES]\n') 

                        z.write(';;Name           Format    Interval SCF      Source\n') 

                        z.write(';;-------------- --------- ------ ------ ----------\n') 
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                        string1 = 'RG1              CUMULATIVE    %s     1.0      FILE       "Rainfall.dat" Station1   

IN\n\n' % (interval) 

                        z.write(string1) 

                        z.write('[SUBCATCHMENTS]\n') 

                        z.write(';;Name           Rain Gage        Outlet           Area     %Imperv  Width    %Slope   

CurbLen  SnowPack\n') 

                        z.write(';;-------------- ---------------- ---------------- -------- -------- -------- -------- -------- ---------------

-\n') 

                        string2 = 'SC1              RG1              S1              %s        %s      1044      %s        0\n\n' % 

(site_area, pcnt_imp, PCT_S) 

                        z.write(string2) 

                        z.write('[SUBAREAS]\n') 

                        z.write(';;Subcatchment   N-Imperv   N-Perv     S-Imperv   S-Perv     PctZero    RouteTo    

PctRouted\n') 

                        z.write(';;-------------- ---------- ---------- ---------- ---------- ---------- ---------- ----------\n') 

                        string3 = 'SC1              %s      %s       %s       %s       0          OUTLET\n\n' % (N_1, N_2, 

S_1, S_2) 

                        z.write(string3) 

                        z.write('[INFILTRATION]\n') 

                        z.write(';;Subcatchment   Suction    Ksat       IMD\n') 

                        z.write(';;-------------- ---------- ---------- ----------\n') 

                        string4 = 'SC1              %s       %s       %s\n\n' % (SH, Kst, IMDx) 

                        z.write(string4) 

                        z.write('[JUNCTIONS]\n') 

                        z.write(';;Name           Elevation  MaxDepth   InitDepth  SurDepth   Aponded\n') 

                        z.write(';;-------------- ---------- ---------- ---------- ---------- ----------\n') 

                        z.write('J1               8.9        10         0          0          0\n') 

                        z.write('J2               9          10         0          0          0\n') 

                        z.write('J3               9          10         0          0          0\n\n') 

                        z.write('[OUTFALLS]\n') 

                        z.write(';;Name           Elevation  Type       Stage Data       Gated    Route To\n') 

                        z.write(';;-------------- ---------- ---------- ---------------- -------- ----------------\n') 

                        z.write('OF1              8.8        FREE                        NO\n\n') 

                        z.write('[STORAGE]\n') 

                        z.write(';;Name           Elev.    MaxDepth   InitDepth  Shape      Curve Name/Params            

N/A      Fevap    Psi      Ksat     IMD\n') 

                        z.write(';;-------------- -------- ---------- ----------- ---------- ---------------------------- -------- --------          

-------- --------\n') 

                        z.write('S1               10       15         0          TABULAR    Curve_S1                     0        

1\n\n') 

                        z.write('[CONDUITS]\n') 

                        z.write(';;Name           From Node        To Node          Length     Roughness  InOffset   

OutOffset  InitFlow   MaxFlow\n') 

                        z.write(';;-------------- ---------------- ---------------- ---------- ---------- ---------- ---------- ---------- -----

-----\n') 

                        z.write('C1               J1               OF1              10         0.01       0          0          0          0\n') 

                        z.write('C2               J2               J1               10         0.01       0          0          0          0\n') 



IDF Project Report  September 2020 

r  131 

 

                        z.write('C3               J3               J1               10         0.01       0          0          0          0\n\n') 

                        z.write('[ORIFICES]\n') 

                        z.write(';;Name           From Node        To Node          Type         Offset     Qcoeff     Gated    

CloseTime\n') 

                        z.write(';;-------------- ---------------- ---------------- ------------ ---------- ---------- -------- ----------\n') 

                        z.write('O1               S1               J3               SIDE         0          0.60       NO       0\n\n') 

                        z.write('[WEIRS]\n') 

                        z.write(';;Name           From Node        To Node          Type         CrestHt    Qcoeff     Gated    

EndCon   EndCoeff   Surcharge  RoadWidth  RoadSurf   Coeff. Curve\n') 

                        z.write(';;-------------- ---------------- ---------------- ------------ ---------- ---------- -------- -------- -------

--- ---------- ---------- ---------- ----------------\n') 

                        z.write('W1               S1               J2               TRANSVERSE   ' + str(round(H2,2)) + '       

3.00       NO       0        0          YES\n\n') 

                        z.write('[XSECTIONS]\n') 

                        z.write(';;Link           Shape        Geom1            Geom2      Geom3      Geom4      Barrels    

Culvert\n') 

                        z.write(';;-------------- ------------ ---------------- ---------- ---------- ---------- ---------- ----------\n') 

                        z.write('C1               CIRCULAR     8                0          0          0          1\n') 

                        z.write('C2               CIRCULAR     8                0          0          0          1\n') 

                        z.write('C3               CIRCULAR     4                0          0          0          1\n') 

                        string5 = 'O1               CIRCULAR     %s              0          0          0\n' % (O_diam) 

                        z.write(string5) 

                        string6 ='W1               RECT_OPEN    10               %s      0          0\n\n' % (W_width) 

                        z.write(string6) 

                        z.write('[CURVES]\n') 

                        z.write(';;Name           Type       X-Value    Y-Value\n') 

                        z.write(';;-------------- ---------- ---------- ----------\n') 

                        z.write("Curve_S1         Storage    0          " + str(curve['Stage00']) + "\n") 

                        z.write("Curve_S1                    1          " + str(curve['Stage01']) + "\n") 

                        z.write("Curve_S1                    2          " + str(curve['Stage02']) + "\n") 

                        z.write("Curve_S1                    3          " + str(curve['Stage03']) + "\n") 

                        z.write("Curve_S1                    4          " + str(curve['Stage04']) + "\n") 

                        z.write("Curve_S1                    5          " + str(curve['Stage05']) + "\n") 

                        z.write("Curve_S1                    6          " + str(curve['Stage06']) + "\n") 

                        z.write("Curve_S1                    7          " + str(curve['Stage07']) + "\n") 

                        z.write("Curve_S1                    8          " + str(curve['Stage08']) + "\n") 

                        z.write("Curve_S1                    9          " + str(curve['Stage09']) + "\n") 

                        z.write("Curve_S1                    10         " + str(curve['Stage10']) + "\n") 

                        z.write("Curve_S1                    11         " + str(curve['Stage11']) + "\n") 

                        z.write("Curve_S1                    12         " + str(curve['Stage12']) + "\n") 

                        z.write("Curve_S1                    13         " + str(curve['Stage13']) + "\n") 

                        z.write("Curve_S1                    14         " + str(curve['Stage14']) + "\n") 

                        z.write("Curve_S1                    15         " + str(curve['Stage15']) + "\n") 

                        z.write('\n') 

                        z.write('[REPORT]\n') 

                        z.write(';;Reporting Options\n') 

                        z.write('AVERAGES   YES\n') 
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                        z.write('SUBCATCHMENTS ALL\n') 

                        z.write('NODES ALL\n') 

                        z.write('LINKS ALL\n\n') 

                        z.write('[TAGS]\n\n') 

                        z.write('[MAP]\n') 

                        z.write('DIMENSIONS 0.000 0.000 10000.000 10000.000\n') 

                        z.write('Units      None\n\n') 

                        z.write('[COORDINATES]\n') 

                        z.write(';;Node           X-Coord            Y-Coord\n') 

                        z.write(';;-------------- ------------------ ------------------\n') 

                        z.write('J1               10771.429          5857.143\n') 

                        z.write('J2               10437.037          6770.370\n') 

                        z.write('J3               10555.556          4903.704\n') 

                        z.write('OF1              12051.852          5822.222\n') 

                        z.write('S1               8028.571           5857.143\n\n') 

                        z.write('[VERTICES]\n') 

                        z.write(';;Link           X-Coord            Y-Coord\n') 

                        z.write(';;-------------- ------------------ ------------------\n') 

                        z.write('O1               9514.286           4828.571\n') 

                        z.write('W1               9600.000           6857.143\n\n') 

                        z.write('[Polygons]\n') 

                        z.write(';;Subcatchment   X-Coord            Y-Coord\n') 

                        z.write(';;-------------- ------------------ ------------------\n') 

                        z.write('SC1              5114.286           7428.571\n') 

                        z.write('SC1              5085.714           4114.286\n') 

                        z.write('SC1              2171.429           4200.000\n') 

                        z.write('SC1              2228.571           7457.143\n\n') 

                        z.write('[SYMBOLS]\n') 

                        z.write(';;Gage           X-Coord            Y-Coord\n') 

                        z.write(';;-------------- ------------------ ------------------\n') 

 

                    z.close() 

 

                #Run pyswmm simulation 

                if BMP == 'Bioretention': 

                    with Simulation(infile) as sim: 

                        j1 = Nodes(sim)["J1"] 

                        lid_on_sub = LidGroups(sim)["SC1"] 

                        for step in sim: 

                            pass 

 

                        PEAKFLOW = str(j1.statistics.get('peak_total_inflow')) 

                        OVERFLOW = str(lid_on_sub[0].water_balance.surface_flow / 12 * Bio_footprint) 

                        UNDERDRAIN_OUTFLOW = str(lid_on_sub[0].water_balance.drain_flow / 12 * 

Bio_footprint) 

 

                        sim.close() 
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                if BMP == 'Wet Pond': 

                    infile = ("SWMM.inp") 

                    with Simulation(infile) as sim: 

                        of1 = Nodes(sim)["OF1"] 

                        for step in sim: 

                            pass 

 

                        site_peakflow = of1.statistics.get('peak_total_inflow') 

                        site_volume = of1.cumulative_inflow 

 

                #Create row to iterate into datafrme 

                if BMP == "Bioretention": 

                    ROW_TO_ADD = 

[STATION_NAME,STATION_ID,YEAR,GCM_RCP,BMP,cc,ANALYSIS,bb,PRECIP,PEAKFLOW,OVERF

LOW,UNDERDRAIN_OUTFLOW] 

                if BMP == "Wet Pond": 

                    ROW_TO_ADD = 

[STATION_NAME,STATION_ID,YEAR,GCM_RCP,BMP,cc,ANALYSIS,bb,PRECIP,H2,site_peakflow,site

_volume] 

 

                DF_OUTPUT.loc[len(DF_OUTPUT)] = ROW_TO_ADD 

 

        print ("Row complete: " + str(aa)) 

 

    #Export dataframe to master output 

    DF_OUTPUT.to_csv(outfile,index=False) 

 

    ###End In-code processing### 

 

    #set end time 

    ENDTIME = time.time() 

 

    #indicate process finish and time taken 

    print('Date today: %s' % dt.date.today()) 

    print("program finished") 

    print("It took {0:.2f} minutes to execute this".format((ENDTIME - STARTTIME) / 60.)) 

 

if __name__=="__main__": 

    main() 


