Stream Restoration Monitoring:
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Outline

- Question(s) to be answered through monitoring

- Monitoring design issues

- The “nitty-gritty” (why, what, when, where, and
how)



The “Nitty-Gritty” (why, what, when,
where, and how)

* Why monitor?

> To provide instantaneous measures of pollutant
concentration (C) and discharge (Q) necessary for /c\estimating
pollutant loads (L = 2CQ) and load reductions (L, — L,)

e What to measure!?

> Stage & discharge; rating curves; TSS; N; P; ancillary data
(turbidity)?

e When to measure?

o Baseflow & stormflow conditions

* Where to measure!
o Upstream and downstream ends of reach(es)?

e How (and how frequently) to measure!?



How (and how frequently) to measure!?

e Summary

* We discussed the following options:

) Hourly sampling ($$$$) or by deploying in situ probes for some
constituents, e.g., turbidity, to reduce costs;

2) Low frequency, e.g., weekly or bi-weekly fixed time-based sampling

($); and
3) Hybrid sampling regimes, e.g., low-frequency for baseflow and high-
frequency for targeted stormflow events ($$).
" We also discussed errors in estimating loads, but
stopped short of recommending specific designs that
would be applied universally.



Follow-up questions:

* What are the primary sources of error in load
estimation!?

o Biases

o Random errors

e Does the magnitude of the error vary as a function
of the constituent being measured!?

e Given a focus on TSS, TP, and TN, how frequently
should we sample in the Sassafrass River
watershed!?



Sources of Error

e Gaging errors: in development of rating curves, individual

discharge measurements are likely only accurate to +10%
(USGS)

e Rating curves based on a large number of measurements
will tend to average out random errors, however

e Gaging errors include various potential biases, however:
° [nability to measure the mean vertical velocity in a channel
> Presence of channel ice (cold climates only)
o Shifts in rating curve due to channel scouring or deposition

> Submergence of a critical depth meter
e Load bias will be directly proportional to gaging bias

e Significant load errors resulting from inability to adequately
sample concentrations



Concentration Errors
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o Can exhibit either “concentration’

Uniform distribution of
concentrations across a wide
variation in stream discharge =

¢

‘chemostatic”

Distribution of concentration
is highly skewed and varies as a

function of discharge =

“chemodynamic”

(positive slope) or “dilution”
(negative slope) behavior

Normally based on graph of
logC vs logQ



Concentration Errors

Chemostatic case

Blackbird Creek at Blackbird, DE (2017 water year)
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Chemostatic case
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Chemodynamic case
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Method

e “Sampled” the measured discharge and synthetic TSS/TP

and TN concentration time series on monthly, biweekly,
and weekly basis

e Estimated annual loads from the sample data from:
[ = i=1(C;Q:)(Q4)
o n
i=1 Ui

where C, and Q, are instantaneous concentration and discharge

values measured at time i,and Q, is the mean discharge for the
estimation period

e Computed mean load, bias (% of actual load), and

relative mean standard deviation (RMSD, %) for both
constituents for all three sampling frequencies



Results

TSS/TP TN
Estimator
M BW W M BW W
True load 7598 7598 7598 455 455 455
Est. load 4898 6087 5726 455 455 455
Bias (%) -36 -20 -25 0 0 0
RMSD (%) 87 46 42 0 0 0

* As expected, errors associated with loads of constituents that are
perfectly chemostatic are strictly gaging errors

e For chemodynamically-positive constituents:

> Routine sampling produces negative bias in load estimates and random errors
that are likely too large for assessment purposes

o RMSD’s were reduced somewhat by higher frequency sampling, however

* What about “real” constituents (logC vs. logQ slopes between 0 and
1)? See 2018 paper by MZ Bieroza et al. (STOTEN 630:738-749)



MZ Bieroza et al. (2018)

e Similar (but far more elegant

and complete) statistical analysis

using real high- and low-
frequency water quality data
from gaged agricultural
watersheds in Europe

o Relatively large suite of water
quality constituents

e Findings:

> Uncertainty in load estimates
increases with reduced sampling
frequency as a function of the
logC-logQ slope

> As predicted, some constituents
are highly chemostatic (e.g,.
conductivity) while others are
highly chemodynamic (e.g., TSS)
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Unpublished Data (Eshleman et al.)

Black Lick, Garrett County, MD
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Conclusions

e For chemodynamically-positive constituents like many (e.g.,
TSS, TP) that we are interested in reducing through stream
restoration and watershed management, sampling should
principally target stormflow conditions and be performed at
~hourly sampling frequency

e For ~chemostatic constituents (e.g., nitrate, conductivity, etc.),
sampling can be performed at a much lower frequency across
all flows

e Therefore, a hybrid sampling design was proposed that
involved a combination of low-frequency (weekly or bi-
weekly) sampling and targeted stormflow sampling relying on
programmable automatic samplers

e Such as design would be reliable, while reducing sampling
costs, lab analysis costs, random errors, and biases to a
reasonable extent



