Stream Restoration Monitoring: Discussion (2017)

Keith Eshleman (UMCES)

Outline

- Question(s) to be answered through monitoring
- Monitoring design issues
- The "nitty-gritty" (why, what, when, where, and how)

The "Nitty-Gritty" (why, what, when, where, and how)

- Why monitor?
 - To provide instantaneous measures of pollutant concentration (C) and discharge (Q) necessary for estimating **pollutant loads** ($L = \Sigma CQ$) and load reductions ($L_2^{\wedge} L_2$)
- What to measure?
 - Stage & discharge; rating curves; TSS; N; P; ancillary data (turbidity)?
- When to measure?
 - Baseflow & stormflow conditions
- Where to measure?
 - Upstream and downstream ends of reach(es)?
- <u>How</u> (and how frequently) to measure?

How (and how frequently) to measure?

- Summary
 - We discussed the following options:
 - I) Hourly sampling (\$\$\$\$) or by deploying *in situ* probes for some constituents, e.g., turbidity, to reduce costs;
 - 2) Low frequency, e.g., weekly or bi-weekly fixed time-based sampling (\$); and
 - 3) Hybrid sampling regimes, e.g., low-frequency for baseflow and high-frequency for targeted stormflow events (\$\$).
 - We also discussed errors in estimating loads, but stopped short of recommending specific designs that would be applied universally.

Follow-up questions:

- What are the primary sources of error in load estimation?
 - Biases
 - Random errors
- Does the magnitude of the error vary as a function of the constituent being measured?
- Given a focus on TSS, TP, and TN, how frequently should we sample in the Sassafrass River watershed?

Sources of Error

- Gaging errors: in development of rating curves, individual discharge measurements are likely only accurate to ±10% (USGS)
- Rating curves based on a large number of measurements will tend to average out random errors, however
- Gaging errors include various potential biases, however:
 - Inability to measure the mean vertical velocity in a channel
 - Presence of channel ice (cold climates only)
 - Shifts in rating curve due to channel scouring or deposition
 - Submergence of a critical depth meter
- Load bias will be directly proportional to gaging bias
- Significant load errors resulting from inability to adequately sample concentrations

Concentration Errors

- Uniform distribution of concentrations across a wide variation in stream discharge =
 "chemostatic"
- Distribution of concentration is highly skewed and varies as a function of discharge =
 "chemodynamic"
 - Can exhibit either "concentration"
 (positive slope) or "dilution"
 (negative slope) behavior
- Normally based on graph of logC vs logQ

Concentration Errors

Chemostatic case

Chemodynamic case

Chemostatic case

Chemodynamic case

Method

- "Sampled" the measured discharge and synthetic TSS/TP and TN concentration time series on monthly, biweekly, and weekly basis
- Estimated annual loads from the sample data from:

$$L = \frac{\sum_{i=1}^{n} (C_i Q_i)(Q_A)}{\sum_{i=1}^{n} Q_i}$$

where C_i and Q_i are instantaneous concentration and discharge values measured at time i, and Q_A is the mean discharge for the estimation period

 Computed mean load, bias (% of actual load), and relative mean standard deviation (RMSD, %) for both constituents for all three sampling frequencies

Results

Estimator	TSS/TP			TN		
	M	BW	W	М	BW	W
True load	7598	7598	7598	455	455	455
Est. load	4898	6087	5726	455	455	455
Bias (%)	-36	-20	-25	0	0	0
RMSD (%)	87	46	42	0	0	0

- As expected, errors associated with loads of constituents that are perfectly chemostatic are strictly gaging errors
- For chemodynamically-positive constituents:
 - Routine sampling produces negative bias in load estimates and random errors that are likely too large for assessment purposes
 - RMSD's were reduced somewhat by higher frequency sampling, however
- What about "real" constituents (logC vs. logQ slopes between 0 and 1)? See 2018 paper by MZ Bieroza et al. (STOTEN 630:738-749)

MZ Bieroza et al. (2018)

- Similar (but far more elegant and complete) statistical analysis using real high- and lowfrequency water quality data from gaged agricultural watersheds in Europe
- Relatively large suite of water quality constituents
- Findings:
 - Uncertainty in load estimates increases with reduced sampling frequency as a function of the logC-logQ slope
 - As predicted, some constituents are highly chemostatic (e.g., conductivity) while others are highly chemodynamic (e.g., TSS)

GRAPHICAL ABSTRACT

Unpublished Data (Eshleman et al.)

Conclusions

- For chemodynamically-positive constituents like many (e.g., TSS,TP) that we are interested in reducing through stream restoration and watershed management, sampling should principally target stormflow conditions and be performed at ~hourly sampling frequency
- For ~chemostatic constituents (e.g., nitrate, conductivity, etc.), sampling can be performed at a much lower frequency across all flows
- Therefore, a hybrid sampling design was proposed that involved a combination of low-frequency (weekly or biweekly) sampling and targeted stormflow sampling relying on programmable automatic samplers
- Such as design would be reliable, while reducing sampling costs, lab analysis costs, random errors, and biases to a reasonable extent