TREE TRADE-OFFS IN STREAM RESTORATION PROJECTS: IMPACT ON RIPARIAN GROUNDWATER QUALITY

Presenters: Sujay S. Kaushal¹ and Kelsey L. Wood¹

Research Team Includes: Philippe G. Vidon²
Joseph G. Galella¹

¹University of Maryland ²State University of New York ESF

Outline

- Overview/ Key Questions
- Methods/ Study Sites
- Results/ Discussion
- Management Implications

Outline

- Overview/ Key Questions
- Methods/ Study Sites
- Results/ Discussion
- Management Implications

Motivation

 Trees in riparian zones provide key water quality functions

 Trees can be removed from riparian zones during stream restoration

 There is a lack in our understanding of the effects of tree removal on water quality

Research Questions

- What is the impact of riparian tree removal during stream restoration and subsequent recovery (if any) on groundwater quality across restored, degraded, and forested reference sites in Maryland?
- Which type of broadly available data are best suited to predict both the nominal and cumulative impacts of riparian zones with various history of tree dynamics / disturbance on water quality at the watershed scale?

Experimental Design

- Chronosequence of restoration up to 20 years
- Variety of stream restoration types

 Paired riparian zones with undisturbed trees and with trees removed in same watershed

 Measure concentrations of common plant nutrients and contaminants in ground water

Restoration Chronosequence

	Campus Creek (uncut)	Paint Branch (5-year Cut)	Scott's Level (Uncut/ 5-year Cut)	Stony Run (10-year Cut)	Minebank Run (20-year Cut)	
Year restored	2019	2014	2014	2009	1999	
Area of Tree Canopy Removed (km²)	TBD	13.958	9.703	6.089	NA	
Geologic Province	Coastal plain (quaternary sediments)	Coastal plain (quaternary sediments)	Piedmont (quartz feldspar schist and granulite)	Piedmont (gabbro and norite)	Piedmont (schist and gneiss)	
USDA Soil Classification	ZS—Zekiah and Issue soils, frequently flooded	CF- Codorus and Hatboro soils, frequently flooded	hbA- Hatboro silt loams	50A- Hatboro-Codorus complex, frequently flooded	MmA- Melvin silt loam	
Soil Texture	Loam, silt loam, mucky silt loam, fine sandy loam, sandy loam	Silt loam, loam	Silt loam, silty clay loam, sandy loam	Silt loam, Gravelly silt loam, very gravelly silt loam	Silt loam, silty clay loam	
Riparian Zone Slope	0.05	0.12	0.07	0.09	0.1	
Riparian Zone Width (m)	32-35	40+	5-25	10-18	20-25	
Channel Width (m)	2-3	10-12	2-4	2-4	1-2	
NWI Wetland Classification	PFO1A Freshwater forested/ shrub wetland	PFO1A Freshwater forested/ shrub wetland	PEM5Ax- Freshwater emergent wetland PFO1Ax-Freshwater forested/ shrub wetland	R3UBH- Riverine	PFO1/EM5A- Freshwater forested shrub wetland	
Vegetation	Mature Trees (Maple, Holly, Beech)	Herbaceous near river, Mature trees upland (Tulip Magnolia, Maple)	Transect A: Herbaceous Transect B: Mature trees (Hickory, Oak)	Young/relatively smaller trees (Redbud, Beech)	Mature trees (Sycamore, Beech, Oak) & herbaceous	
Drainage Basin Area (mi²)	0.59	29.3	1.19	0.64	0.41	
Impervious Surface Cover in Watershed	22.8 %	31.6 %	37.7%	39.6%	40.8	
Forest Cover in Watershed	24.9 %	25.6 %	19.9 %	12 %	25 %	

Tree Removal Area

Chronosequence of sites 5- 20 years and uncut comparisons

Results: Sites where trees were removed had higher nutrient concentrations than sites where no trees were removed

- Concentrations of common plant nutrients
 (nitrogen, potassium, calcium, etc.) were elevated in ground water in sites where trees were removed
- Concentrations of common plant nutrients in groundwater decrease downslope in riparian zones with trees, but increase downslope in riparian zones where trees were removed

190 samplescollected over a2 year period

Multiple element approach

Nutrients and carbon were most elevated immediately following restoration/ tree removal

	DIC		DOC		TDN		Ca					
	, ,	a.r.	post-		1.0	post-			post-			post-
	Mean	SE	hoc*	Mean	SE	hoc*	Mean	SE	hoc*	Mean	SE	hoc*
Uncut	14.931	4.155	a	4.742	0.831	a	0.752	0.326	a	14.483	3.409	a
5-yr cut	42.186	4.753	b	9.126	0.95	b	2.535	0.373	b	48.118	3.926	b
10-yr cut	68.235	8.913	c	3.576	1.782	a	0.867	0.699	a,b	70.389	7.465	c
20-yr cut	64.384	5.406	c	2.657	1.081	a	1.5	0.424	a,b	65.281	4.539	c
	K		Mg		Na		<mark>S</mark>					
			post-			post-			post-			post-
	Mean	SE	hoc*	Mean	SE	hoc*	Mean	SE	hoc*	Mean	SE	hoc*
Uncut	2.746	0.253	a	4.625	1.028	a	6.283	0.855	a,b	4.166	0.732	a
5-yr cut	3.777	0.291	a	8.691	1.184	b	8.435	0.985	a	7.143	0.843	b
10-yr cut	3.958	0.553	a	11.554	2.252	b	7.468	1.873	a,b	5.534	1.602	a,b
20-yr cut	3.5	0.336	a	24.751	1.414	c	4.357	1.139	b	1.63	0.974	a

Tukey's (*post-hoc) results from restoration age-based ANOVA (Wood et. al. 2021)

Wood et. al. (In Review)

Nutrient concentrations peaked after restoration/tree removal and then declined with ecosystem recovery and riparian tree growth.

Plant Nutrient and Carbon Concentrations Decreased from Wet to Dry Conditions

Plant biomass and organic matter can be a source or sink of nutrients.

Wood et. al. (In Review)

Riparian zones are sources or sinks: restored/cut sites vs. uncut sites

Nutrient uptake along flowpaths (sink) at uncut sites and accumulation along flowpaths (source) at 5-year cut sites.

Wood et. al. (In Review)

streams

groundwater

Other studies have shown increased nutrient concentrations after tree removal in watersheds

Study	Water Chemistry Response after Tree Removal	Location		
Löfgren et al. (2009)	Increased concentrations of Na, K, N, Cl, etc. in streams	Sweden		
Martin and Pierce (1980)	Increased concentrations of Ca and N in streams	Northeastern U.S. /New England		
(G. E. Likens et al. 1970))	Increased concentrations of N, Ca, K, Na, Mg, etc. in streams	New Hampshire, USA		
Aubertin and Patric (1974)	Increased concentrations of nitrate and phosphate in streams	West Virginia, USA		
Hewlett, Post, and Doss (1984)	Increased concentrations of N, K, Na, Ca, Mg, etc. in streams	Georgia, USA		
Burns and Murdoch (2004)	Increased concentrations of nitrate in streams	Catskills, New York, USA		
Swank, Vose, and Elliott (2001)	Increased concentrations of nitrate, K, Na, Ca, Mg, S, and Cl in streams	Southern Appalachian Mountains, North Carolina, USA		
Feller and Kimmins (1984)	Increased concentrations of N, K, Mg, Ca, etc. in streams	Vancouver, British Columbia		
Rusanen et al. (2004)	Increased concentrations of nitrate in groundwater	Finland aquifers		
Kubin (1998)	Increased concentrations of nitrate in groundwater	Finland aquifers		
Williams, Fisher, and Melack (1997)	Increased concentrations of nitrate, potassium, sodium, and chloride in groundwater	Amazonian rainforest in Brazil		

Tree-Tradeoff: Take Home Points

- Significantly increased concentrations in riparian groundwater for at least 5 years following tree removal then subsequent recovery
- Increased concentrations during wet periods and decreased concentrations during dry periods
- Strong relationships with DOC (organic matter) across sites suggesting the importance of plant uptake and biomass (organic matter) as sources and sinks of nutrients
- Significant increases in concentrations along hydrologic flow paths from uplands to streams in riparian zones where trees were recently cut, and opposite patterns where trees were not cut – riparian zones can be nutrient source or sink

Translation Slides

by Sadie Drescher

What does this mean for me?

- True to the theme of this research project the restoration and short/long-term impacts are a "trade-off" for us to consider
- Now we have some data on this topic which has been longawaited
- There are impacts after stream restoration and there is a recovery period
- As always, other factors impact the concentrations entering the stream from the groundwater and the recovery, e.g., if it is a wet year or a dry year
- The stream restoration can improve ecosystem function, as intended, and the riparian zone can bounce back after a recovery period of >5 years

What does this mean for me?

What do I take from this if I am a practitioner:

- After restoration when trees are removed there will likely be a period of about 5 years where higher concentrations of nutrients enter the groundwater
- What can I do to lessen the impact?

What do I take from this if I am a regulator:

 After 5 years a "successful" stream restoration that removed trees will be accomplishing the restoration goals and regaining the riparian function (riparian tree growth and ecosystem recovery)

Acknowledgments

 Thanks to the Maryland Department of Transportation and Maryland Department of Natural Resources for funding along with all the funding partners below.

