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Challenges in Detecting Effects of
Restoration and Conservation — Why?

-Most monitoring efforts occur over time — what about space”?
-We focus on one or a few metrics — a more holistic approach?

-What about connections along flowpaths to receiving waters?



The Watershed Continuum Approach
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CHEMICAL CONCENTRATION
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Hypotheses

-There will be decreasing trends in pollutants
and increasing trends in water quality tradeoffs
along restored stream flowpaths based on
different types of stream-floodplain
reconnection.

-Decreasing trends in pollutants along stream
flowpaths will be related to increasing riparian
buffer widths across watershed scales.

*There will be longitudinal trends in co-
benefits of restoration and conservation!



Stream Restoration Can Reduce Nitrogen across Space-Time
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Stream Restoration Can Increase Organic Carbon

Tradeoff or Benefit?
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What Are Tradeoffs?

Potential Water Quality Benefits

Potential Water Quality Costs

Decreased nutrients and sediments due to greater
retention in floodplains and pools

Increased hypoxic and anoxic periods of low
dissolved O; (DO)

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

greater biological uptake —

Increased production of algae and bacteria and
biochemical oxygen demand (BOD)

Decreased concentrations of Na* and Cl- from
road salts through soil ion exchange —

Increased mobilization of N, P, and metals from
soil 1on exchange sites and Na dispersion of soils

Decreased sediment due to retention of
particulates in RSC pools and tloodplains

Increased mobilization of dissolved P from soils
due to desorption at low DO and high pH

Kaushal et al. (In Prep)

*What Are Co-Benefits? Attenuation of nutrients, salts, metals, and increases in
hydrologic connectivity (Kaushal et al. 2023, Shelton et al. 2024, Malin et al. 2024)
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Dissolved Oxygen Is Related to Stream Width and
Stream Velocity along Watershed Flowpaths
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Tradeoff: Trading Decreased Stream Velocity for Lower Oxygen?
Tradeoff or Benefit?



Restoration Realities: Comparing
Hydrologic Connectivity

-Channel Stabilization (In-stream
structures and water In the channel)

-Floodplain Reconnection (Designed
to spill water out of the channel)

-Step Pool Conveyance (Designed to
slow flow and pool water)

Photo Courtesy: Kelsey Wood



Hickey Run: Can Water Quality Improve?
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Water quality improves as urban Hickey Run flows from storm drain, through and

downstream of stream restoration projects, and through National Arboretum
Thanks to Ashley Dann



Hickey Run
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Hickey Run

Hickey Run BIX Hickey Run HIX
@ 1/29/2025 8/21/2024 4/28/2025 ®1/29/25 8/21/24 4/28/2025
1.05 - 0.86 '
| |
| |
o ® : 0.84 | Increasing Organic
1 s ¢ . : Carbon from
le ' Terrestrial Sources
| ® $ 0.82 I
0.95 : o : __—
P I x |
3 : . T 0.8 :
. : Decreasing :
' ! T, Organic Carbon os e s
I : : | °
: from Microbes I o ¢ g
| |
0.85 I 0.76 I
| |
| |
0.8 ' 0.74 I
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Distance Downstream (m) Distance Downstream (m)

Longitudinal change in organic matter sources as Hickey Run flows from storm
drain through stream restoration project and National Arboretum

Thanks to Ashley Dann



Scotts Level Branch: Nitrogen Reductions
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Stream Restoration Reduces Peak Storm Flow and Improves Aquatic Life
in Sligo Creek

Retention Pond along Stream Synoptic

Thanks to Wes Slaughter




Nitrogen Reductions along Sligo Creek

0.025
=
" T 0020 e
T Date
= . :
| 80 0015 Nitrogen Reductions 01/08/2025
. * ~ from Stormwater BMPs e 03/04/2025
o0 4 and Restoration e 05/22/2025
¢ o) 08/07/2024
i & S 0.010 / Nitrogen Reductions
. ® . x )
® L - / from Parks Restored
A = 0.005 B o —
0.000 ®
5000 10000 0 5000 10000
Distance Downstream (m) Distance Downstream (m)

Thanks to Wes Slaughter



Watts Branch: Variations in Nitrogen Reductions
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Variations in Nitrogen Exports Along Flowpath
Spring Branch
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Decline in Nitrogen Exports due to Loading
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Conclusions for Year 1

-Stream-floodplain restoration can reduce nitrogen transport at watershed scales.
-There can be tradeoffs between nitrogen retention, carbon, and dissolved oxygen.
-Water quality hot spots and transition zones can be identified and guide restoration.

-The downstream distance that water quality can be restored can be quantified.
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Translation Slides

What are the take home points?
What does this mean for me?

Translation Slides by Ari Engelberg



What does this mean for me”?

* These streams exhibited very dynamic patterns in nutrient levels as
water flowed through the restorations. This likely reflects a

combination of the effects of the restoration and local watershed
conditions.

* Increasing levels of terrestrial carbon in some stream restorations was
correlated to decreasing N levels as you moved from upstream-
downstream (Scotts Level and Hickey Run).

* Potential trade offs between nutrient reduction and dissolved oxygen
reduction in restorations that slowed stream flow (Campus Creek)

* Some potentially identifiable effects of stormwater management at the
watershed scale resulted in decreased N loads (Sligo Creek) . Will
need more work to tease apart what's causing this pattern.



What does this mean for me”?

What do | take from this if | am a practitioner:

* Keep in mind potential trade offs from slowing down streamflow.

* Minimize limit of disturbances during construction and protect riparian
buffers; mature forest provides a critical carbon source for the stream
that may promote denitrification and nutrient cycling.

What do | take from this if | am a regulator:

* Keep in mind the above when siting and reviewing stream restorations.

* Consider increasing post-restoration longitudinal sampling of funded
or permitted projects. This may supplement traditional before/after
sampling to reveal useful information on restoration performance.



Discharge (cfs)

Pollution “Hot Spots” Can Be Identified along Watersheds
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Future and Ongoing Work

-Continue longitudinal monitoring and analyze incoming results

-Statistical relationships between land use/land cover and pollutant concentrations
and loads (e.g., Kaushal et al. 2023, Maas et al. 2023)

-Analysis of statistical breakpoints to detect restoration and conservation signals and
how far they persist downstream (e.g., Shelton et al. 2024)

-Comparison of changes in concentrations and loads before and after stream
restoration over time and space (e.g., Mayer et al. 2022, Kaushal et al. 2023)

-Comparisons using 3 paired and nested watersheds (Scotts Level/trib, Hickey
Run/Springhouse trib, Paint Branch/Campus Creek trib) .
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