

VIRGINIA TECH.

Effectiveness of stormwater management practices in protecting stream channel stability

Tess Wynn Thompson

David Sample

Mohammad Alsmadi

Sami Towsif Khan

Mina Shahed Behrouz

Andrew Miller

Associate Professor

Professor

Adjunct Faculty

Graduate student

Graduate student

Professor

Virginia Tech

Virginia Tech

Virginia Tech

Virginia Tech

Virginia Tech

Univ. of Maryland, Baltimore County

Acknowledgements

In this talk "sediment" is not a four-lettered word.

- Coarse sediment is naturally transported in suspension and along the channel bed.
- Fine sediment does not play a major role in channel morphology.

Г

The overall study goal is to evaluate the impacts of different stormwater management practices on channel stability

Watershed changes through time

Tributary 109

Watershed changes through time

Minebank Run

Channel stability is a two-part problem

Water

SWMM

Storm Water Management Model

Sediment

HEC-RAS 6.2

SWMM model development

- Watershed characteristics and stormwater infrastructure attributes entered into models
- 2. Models calibrated based on observed USGS flow data
- 3. Calibrated models used to explore multiple scenarios
- 4. Modeled stream discharge used in HEC-RAS model

The effect of different stormwater management strategies were modeled for Minebank Run

- 1. Imperviousness reduced by 50%
- 2. Depression storage doubled
- 3. Soil hydraulic conductivity doubled
- 4. Route all impervious to pervious
- 5. 12 ponds with a total storage volume of 54 acre-ft
- 6. Combinations of scenarios of 2-5

Channel stability is a two-part problem

Water

SWMM

Storm Water Management Model

Sediment

HEC-RAS 6.2

HEC-RAS 1-D model development

- 1. Lidar data and measured cross sections used to create channel geometry
- Bed particle counts, bulk sediment samples, and USGS suspended sediment data used to parameterize sediment transport routines
- 3. Bank soil samples and jet tests used to parameterize bank erosion routines
- Calibrate HEC-RAS to USGS stage data and measured cross section change
- Modeling channel response to stormwater scenarios modeled using SWMM

Results to date...

With ESD all flows increased.

For small storm events, infiltration practices reduce runoff more than storage practices.

Storage practices are necessary to reduce peak flows from large storm events.

07/30/2016 16:48 07/30/2016 18:00 07/30/2016 19:12 07/30/2016 20:24 07/30/2016 21:36 07/30/2016 22:48 07/31/2016

Flood frequency analysis

Minebank Run

Infiltration practices effectively reduce peak flows from small storm events, but storage practices are necessary to reduce peak flows from large storm events.

Channel stability results coming...

Summary

- 1. SWMM and HEC-RAS models developed for two watersheds to investigate how much ESD protects channel stability following development.
- 2. Flow reduction is greatest when using a combination of ESD controlling small storms and SCMs controlling larger events.
- 3. ESD is more effective for small magnitude, high frequency storms, whereas storage BMPs (ponds) are more helpful in controlling flows from large events.
- 4. Channel stability findings...

Translation Slides

What are the take home points? What does this mean for me?

Translation Slides by Sara Weglein

What does this mean for me?

- ESD/infiltration BMPs are more effective in reducing the impacts of smaller, more frequent storms.
- SCMs/storage BMPs are more effective in reducing the impacts of large storm events.
- These BMPs in combination had the greatest impact in reducing the impacts of stormflow overall.
- ESD/infiltration BMPs were also effective in increasing baseflow.
 - This could be an area of additional study; what effect does ESD and increased baseflow have on stream temperature?

What does this mean for me?

What do I take from this if I am a practitioner:

 Need to apply a combination of infiltration and storage BMPs for the greatest chance of success in reducing stormflow.

What do I take from this if I am a regulator:

- Same as above.
- ESD could be utilized to increase the magnitude of baseflows (where a concern), reduce the frequency of dry conditions, and thereby protect biota.