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SUMMARY 

The goal of this project was to improve the ability of the Chesapeake Bay Program to inventory 

and monitor non-tidal wetland ecosystems within the Chesapeake Bay watershed (CBW) and 

create a wetland mapping system that can contribute to National Wetland Inventory data updates. 

To meet these goals, we developed methods that delineate and classify wetland areas using free 

and publicly available remote sensing and GIS data. These methods are automated, repeatable, 

and scalable. We built and trained two deep-learning models (i.e., AI) that ingest a combination 

of National Agriculture Imagery Program (NAIP) multispectral imagery, digital elevation model 

(DEM) data, SSURGO soil characteristics, and Sentinel-1 synthetic aperture radar returns, and 

produce output arrays containing the per-pixel probability of membership in each of five 

exclusive categories: emergent wetlands, forested wetlands, farmed wetlands, open water 

wetlands, and non-wetland. The use of free, nationally available datasets allows these models to 

be used throughout the Chesapeake Bay watershed to update and improve existing wetland data. 

Both deep-learning models exhibited a strong ability to delineate wetlands during model training, 

exhibiting > 0.9 precision and recall on evaluation data. Models exhibited acceptable precision > 

0.4 and recall > 0.7 relative to existing NWI data in test areas within the Chesapeake Bay 

watershed. Qualitatively, these outputs capture areas of open water and forested wetlands that 

can be used to update and improve existing wetland maps. In conjunction with trained models, 

we developed a cloud-computing architecture and workflow that used free and publicly available 

tools to produce wetland data using trained deep-learning models quickly across large spatial 

extents. The production process produces new wetland data in county-sized areas in 3 – 6 hours. 

The process requires minimal user input and does not require download or local storage of input 

data making it portable and scalable. We validated the utility of this wetland mapping system by 

mapping and classifying wetlands within 14 counties that span the full range of states and 

physiographic provinces present within the CBW. This capability will allow wetland maps to be 

updated relatively quickly when either new data (e.g., 2024/25 NAIP) or improved models 

become available. 

METHODS 

Deep Learning Architectures 

We used two well-studied deep-learning architectures to delineate and classify wetlands 

by vegetation type from freely available remote sensing and GIS data. First, we adapted U-Net – 

a well-studied fully convolutional encoder-decoder architecture used for image segmentation – to 

ingest three-dimensional array data and produce three-dimensional arrays in which pixels store 

the probabilities of class membership. Our U-Net model consisted of five consecutive 

convolutional encoder blocks, which increase the feature space of the data while reducing spatial 



resolution, and five decoder blocks that restore spatial detail. Encoder blocks have two sequences 

of a convolutional layer, a batch normalization layer and a rectified linear unit activation, 

followed by a max pooling step to reduce spatial resolution. Decoder blocks have a 

deconvolution layer that increases spatial resolution, the output of which is concatenated with 

output from the reciprocal encoder layer, followed by two sequences of convolution, batch 

normalization, and rectified linear unit activation. We hereafter refer to this sequence of layers as 

the U-Net model. Python code to build this U-Net model with an arbitrary number of input 

variables and output classes is available through a public GitHub repository (see Outputs). 

 The U-Net model delineates wetlands using a single stack of three-dimensional array data 

representing conditions at a single point in time. Because wetlands are dynamic and variable in 

space and time, we developed a second deep-learning architecture designed to explicitly take 

advantage of time-series data; the Long Short-Term Memory (LSTM) network. LSTM networks 

are a recurrent neural network designed to efficiently use temporal data. They consist of a 

sequence of cells equal to the number of timesteps present in input data. Each cell combines the 

input from a given time step, output from the previous cell, and a hidden state that is propagated 

forward through the entire sequence. The calculation of the output of a given cell is controlled by 

three gates: input, output, and forget. The forget gate determines to what extent the previous cell 

state is remembered. The input gate determines how strongly the new input contributes to the 

new cell state. Finally, the output gate is used to calculate the new hidden state. Our approach 

used convolutional LSTM cells that will use 3×3 kernels which are convolved over three-

dimensional input within each gate. A convolutional LSTM model uses both the spatial context 

and temporal sequencing information inherent to time series of remotely sensed data. Our second 

model architecture combined the penultimate outputs of a U-Net model with the penultimate 

outputs from an LSTM model ingesting a time-series of Sentinel-1 radar returns. The output cell 

state from the final LSTM cell was concatenated with the final layer of the U-Net model and 

convolved by a 1 x 1 kernel with a softmax activation function producing a vector of values 

corresponding to the probability of a pixels’ membership in each of the five wetland classes. 

Additionally, the penultimate outputs from the U-Net layers within this model were also 

subjected to softmax activation to produce a vector of probabilities corresponding to membership 

in a course three category wetland classification system, within which the full five categories are 

nested (hence the ‘hierarchical’ description of this model). We refer to this model as the 

‘hierarchical’ model. The hierarchical model takes two sets of inputs – a three-dimensional array 

equivalent to the U-Net model, and a time-series of three-dimensional arrays (i.e., four-

dimensional array). 

Training Data 

Deep-learning models were trained with paired sets of covariate input data (i.e., remote 

sensing data) and wetland label data (i.e., wetland class labels) sampled at random points 

throughout the CBW. We generated 10,000 random points inside National Wetland Inventory 

(NWI) polygon and line features in and around the CBW (Figure 1). Following guidance from 

CBP and NWI partners, we restricted NWI data to those produced by projects that were 

completed in 2014 or more recently (Table 1). This subset of NWI projects was chosen to ensure 

that the polygons used as wetland ‘truth’ were produced using updated quality control standards. 

We note that linear features representing streams may be older than polygons for a given NWI 

project as they are often ingested directly from the National Hydrography Dataset. To create 

training data representing non-wetland areas, we generated an additional 10,000 points falling 



outside of NWI wetland polygons and lines, but within the same NWI project area to restrict 

non-wetland point sampling to areas in which wetlands were completely delineated. Following 

our initial sampling, we tabulated the number of samples falling within each reclassified wetland 

class (Table 1). Based on these numbers and the project focus on identifying non-tidal, forested 

wetlands we generated an additional 5,000 points within polygons identified as Palustrine, 

forested wetlands (PFO1A). 

We used the same set of NWI polygon and line features to create wetland label data. 

Because the focus of this project was to develop methods that can identify non-tidal, forested 

wetlands we did not use the full classification taxonomy available in NWI wetland data to define 

wetland categories in our label data. However, initial testing showed that a simple binary non-

wetland/wetland classification resulted in models underrepresenting forested wetlands and 

confounding agricultural fields. Following advice and guidance from NWI partners and Ducks 

Unlimited Staff, we reclassified NWI wetland data into five general and distinct categories based 

on the WETLAND_TYPE attribute (Table 2). We trained both models to identify non-wetland 

areas, emergent wetlands, forested wetlands, farmed wetlands, and open water.  

Covariate input data for the U-Net model included the red, green, blue, and near infrared 

reflectance values in multispectral NAIP imagery, lidar-derived digital elevation data, and 

SSURGO soil characteristics including annual minimum depth to water, drainage class, flooding 

frequency, and hydric class percentage. These variables were selected following discussions with 

NWI staff as well as a literature review that identified the most important and consistently used 

soil covariates in other wetland mapping research. Flooding frequency and drainage class are 

ordinal, categorical variables. We converted these to scaled, continuous values by first re-

ordering the levels from driest to wettest conditions, setting these conditions to 0 and 1, 

respectively, and interpolating the intermediate levels. (e.g., ‘Excessively drained’ = 0, 

‘Subaqueous’ = 1). We clipped the maximum value of annual depth to water at 200 cm, and the 

maximum value for hydric class percentage at 100. For all soil characteristic variables, we 

replaced missing values with the value corresponding to the driest condition based on the 

understanding that missing values represent places with no soil (e.g., bare rock).  

Covariate inputs to the LSTM architecture within the hierarchical model were time series 

of the radiometrically terrain corrected VV and VH polarized backscatter returns from Sentinel-1 

C-band synthetic aperture radar. Sentinel-1 data have been collected historically by a pair of sun-

synchronous, near-polar orbiting satellites, producing global radar backscatter data every six 

days. The C-band synthetic aperture radar instruments are right-looking, meaning that the same 

location will have different backscatter signatures based on the north-south direction of the orbit 

at that location during a given pass. We used only images collected during the ascending phase of 

the orbit. 

All remotely sensed and GIS data were accessed through the Microsoft Planetary 

Computer - a free cloud-based platform for programmatically accessing and working with 

publicly available geospatial data. The Planetary Computer maintains up-to-date catalogs of 

NAIP, USGS 3DEP digital elevation, SSURGO, Sentinel-1, and NWI data. At each sampling 

point, we extracted a 360 x 360-meter array of all U-Net covariates. These data are provided in 

different native resolutions, therefore these ‘chips’ had different pixel dimensions. NAIP data 

prior to 2017 have 1 m resolution, and 0.6 m resolution thereafter (i.e., 600 x 600 x 4-pixel 

arrays). We used the vintage of NAIP imagery that matched the vintage of imagery used to 



delineate the NWI polygons at a given point, as recorded by the NWI project documentation. 

This ensured that the multispectral imagery used to train the model reflected the same conditions 

represented in the wetland label data. DEM data were 1 m resolution (360 x 360 x 1-pixel 

arrays). SSURGO data are available as a 10 m raster that stores map unit identifiers per pixel, 

and tables containing the soil characteristic attributes for each map unit. At each point we 

extracted 36 x 36 x 4-pixel arrays from the map unit raster and joined the relevant tabular soil 

characteristics to these pixels based on the map unit values. We converted NWI vector data at 

each point to raster using the affine transform matrix, bounds, and shape of the corresponding 

NAIP chip, and converted categorical 1 – 5 values to one-hot vectors (i.e., factors) per pixel. This 

label data therefore indicated a pixels’ exclusive membership in one of each wetland class. We 

resampled all U-Net covariate chips and NWI rasters to a common 0.6 m resolution (i.e., 600 x 

600-pixel arrays) to facilitate easy integration with future NAIP data. Like NAIP data, we 

accessed a year of Sentinel-1 images collected during the same year as the images from which 

NWI data were delineated at a given point. For projects using imagery prior to 2016 we use the 

earliest available year of Sentinel-1 data. At each point we aggregated Sentinel-1 data into 

median composite images per 60-day window and extracted a 360-meter x 360-meter chip. This 

produced a 6 x 36 x 36 x 2-pixel chip. All covariate and NWI arrays were then exported to 

separate directories per variable in an Azure Blob Storage container (see Outputs). File names 

provide a unique id based on the coordinates of the sampling point and were used to match 

variable arrays originating from the same location. This segregated storage facilitated easy 

experimenting with different combinations of covariates during model training. During export 

from the Planetary Computer to Azure Blob storage, the data were randomly assigned to training 

or evaluation directories with 0.7 and 0.3 probability, respectively. Code used to access, process, 

and sample remote sensing and GIS datasets are available through a GitHub repository (see 

Outputs). 

Model Training 

During model training, we implemented data augmentation and standardization to ensure 

a consistent, memory-efficient range of values for all incoming input data, and to increase the 

variability of data seen by the model. Together, these techniques maximize deep-learning 

models’ ability to accurately identify wetlands in diverse geographies and times. For each input 

variable, we rescaled native values to a range of [0, 1] based on empirical minima and maxima. 

For all NAIP bands we used a minimum and maximum value of 0 and 255, for digital elevation 

data, we used a maximum of 0 and 2000, and for Sentinel-1 VV and VH returns we used a 

minimum and maximum of -50 and 0. We additionally augment NAIP bands spectrally and all 

covariate data morphologically. Immediately prior to model ingestion during training, the 

brightness and contrast of each multispectral band were randomly adjusted by ±5%. Finally, the 

entire stack of input variables and label data were randomly rotated by 0, 90, 180, or 270 degrees 

and randomly flipped vertically and horizontally.  

 We trained all models for 200 epochs using batches of 8 training data examples per 

iteration. We optimized model weights by minimizing a weighted generalized dice coefficient 

loss function calculated between one-hot label vectors and softmax class probability vectors 

using the Adam optimizer with initial learning rate of 1e-4 and a decay rate of β1 = 0.9, β2 = 

0.999. At the end of each epoch, we evaluated model performance by calculating mean 

intersection over union (IoU), precision, and recall between predicted wetland class probabilities 

and wetland labels using among validation data at the end of each epoch.  



IoU: (wetland probabilities * wetland labels) / (wetland probabilities + wetland labels) 

Precision: True Positive/(True Positive + False Positive) 

Recall: True Positive/(True Positive + False Negative) 

Model weights were saved if they improved performance in terms of IoU on evaluation data. The 

evaluation data contains 5,000 examples of paired predictor variables and reclassified NWI 

labels. These evaluation examples are never used during training to update model weights. 

Therefore, they provide an evaluation of the model’s performance on out-of-bag examples. The 

metrics are mean values across classes weighted by class prevalence. Model training was 

performed using Keras with Tensorflow backend with batches of 16 chips per training step. We 

created NVIDIA Tesla K80 virtual machines with 2 GPU cores accessed through Microsoft 

Azure and used these machines for model training. 

Data Production 

We developed a portable workflow to generate wetland probability data using trained 

model weights. A georeferenced polygon and date range defining the location and time for which 

outputs are desired are used as inputs to query the Planetary Computer catalog and acquire the 

required covariate data (i.e., NAIP, DEM, and SSURGO). Covariate data are then pre-processed 

as described during model training (i.e., rescaled, resampled, etc.), except for the random data 

augmentation steps used to increase data variability during model training. Covariate data are 

then stacked into a single image and subdivided into overlapping chips which are provided to the 

relevant deep-learning model, and for which output inference data are obtained. Areas of overlap 

are removed from each output chip to create a seamless, contiguous output raster with the same 

spatial extent and shape as input polygons. To speed inferencing, we parallelized the access and 

processing of input covariate data chips across multiple available CPU cores, in which each core 

takes a different coordinate and retrieves the relevant input covariate data. We used this system 

and the best performing weights for each model to generate maps of wetland probability within 

14 test counties in and around the CBW (Figure 1). Outputs for counties in Pennsylvania were 

shared with Ducks Unlimited staff who are performing an NWI wetland delineation project in 

those counties. Ducks Unlimited staff provided qualitative evaluation of the accuracy of model 

outputs and their utility in expediting NWI data production. We evaluated model performance 

quantitatively using outputs generated within ten small 10km2 test areas. In these areas, we 

converted the multiband probability outputs into a single-band classification raster and 

calculating precision, recall, and IoU using reclassified, rasterized NWI wetland polygons as true 

reference data. We used a receiver operating curve analysis to identify the probability threshold 

that best converts probability raster to wetland polygons. We used a series of probability 

thresholds [0.1, 0.2, 0.2, 0.4, 0.5] to assign pixels to a wetland or non-wetland class. For each 

threshold, we assigned the pixel to the highest probability wetland class given that probability 

was above the given threshold. Pixels in which no wetland class exceeded the given probability 

threshold were assigned to non-wetland. For example, a pixel with the following probabilities: 

Non-Wetland: 0.4; Emergent Wetland: 0.1, Forested Wetland: 0.3, Farmed Wetland: 0.1, 

Open Water: 0.1 



would be assigned to Forested Wetland for thresholds, 0.1, 0.2, and 0.3 and non-wetland 

for thresholds 0.4, and 0.5. At each threshold we calculated precision, recall, and IoU. The 

threshold at which IoU was maximized was selected as the optimum threshold for polygon 

creation. We constructed receiver operating characteristic curves from this series of metrics and 

compare the performance of model architectures in terms of area under the curve. 

RESULTS 

We trained both the U-Net and hierarchical models for 200 epochs. The best performing 

model weights files (.hdf5) are available in an Azure Blob Storage container at URLs (see 

Outputs). Both models exhibited ~ 0.90 precision and recall, and between 0.7 and 0.8 IoU using 

model evaluation data (Table 3). Precision and recall calculated against NWI data within 10km2 

county subsets ranged from 0.70 & 0.45 to 0.24 & 0.82 for U-Net, and from 0.88 & 0.22 to 0.34 

& 0.73 for the Hierarchical model (Figure 2). Receiver operating characteristic analysis indicated 

that the U-Net model (AUC = 0.65) was superior to the Hierarchical model (AUC = 0.57). For 

both models, the maximum IoU was achieved using a probability threshold of 0.3 (Figure 2). 

We used the best-performing U-Net weights to generate wetland probability rasters 

within 14 test counties, spanning all five states and six physiographic provinces within the 

Chesapeake Bay Watershed. Parallelization across four cores decreased the time required to 

produce data for a county by approximately 1/3 (18 hours to 6). These are multiband rasters, in 

which each band represents the model-estimated softmax probabilities of membership in a 

different class. Band 1 stores non-wetland probability, band 2 stores emergent wetland 

probability, band 3 stores forested wetland probability, band 4 stores farmed wetland probability, 

and band 5 stores open water probability (Figures 3 & 4). Band values at a given pixel sum to 

one. These outputs are available as cloud optimized geotiffs located in a public Azure Blob 

Storage container (see Outputs).  

Outputs within counties in Pennsylvania produced by the U-Net model were provided to 

Ducks Unlimited to evaluate their utility in complimenting or enhancing photo interpretation 

wetland delineation. Feedback provided by DU staff indicated that open waterbodies identified 

by the model were of sufficient accuracy and quality to be automatically included in final 

production data without manual correction. Staff communicated that forested wetland polygons 

were generally accurate in terms of their location and extent and offered an improvement over 

existing NWI data in Pennsylvania (Figure 5). However, the boundaries of model outputs did not 

exactly match those drawn by expert photo-interpreters, requiring manual correction to be of 

sufficient quality for inclusion in final data production (i.e., to meet Federal Geographic Data 

Committee Wetland Mapping Standard requirements). Emergent wetlands were identified as 

problematic, specifically in terms of commission errors in agricultural fields. 

SUMMARY & NEXT STEPS 

This project has produced two deep-learning models that can automatically map non-tidal 

wetlands using free, public, and nationally available remotely sensed and GIS data, along with a 

cloud-computing infrastructure and workflow to quickly produce wetland maps at the county 

scale. Evaluation of the model performance on both evaluation data ‘chips’ as well as over larger 



areas of interest indicated that a U-Net architecture ingesting NAIP, elevation, and soil 

characteristic data was superior to a more complicated architecture that additionally used C-band 

synthetic aperture radar time series data. This may indicate that when using a deep-learning 

approach there is sufficient information available in the multispectral reflectance, elevation, and 

soil characteristics to accurately identify wetland areas, and that SAR returns added little 

additional informational value. However, the hierarchical model may still have value for future 

wetland mapping analyses due to its inherent ability to simultaneously produce wetland 

membership probabilities for multiple classification schemes. Specifically, the model returns a 

simpler wetland vs. open-water vs. non-wetland probability output that may outperform the five-

class U-Net model in identifying wetland areas more generally. If this capability is of interest to 

the Chesapeake Bay Program or its partners, we would recommend a follow up analysis 

comparing the performance of these models at this coarser aggregation of wetland classes. 

Our analysis also indicates that the U-Net model largely accurately mapping true wetlands, based 

on both quantitative and qualitative assessment. Recall rates relative to NWI data in county 

subsets were relatively high, while precision rates were lower. This is what we would expect if a 

model were identifying wetlands accurately in cases where existing data are accurate but 

incomplete (i.e. Figure 5). In this scenario, lower precision may correspond to the identification 

of wetlands missing from existing data. Evaluation by Ducks Unlimited indicated that this may 

be the case, at least in Pennsylvania counties, especially for newly created (i.e., post NWI data 

production) open water and forested wetland areas. The Conservancy will be acquiring field 

delineated wetland boundaries from Ducks upon completion of their Pennsylvania NWI update 

project and can re-run the accuracy analysis on these high-precision, up-to-date data. Similarly, 

Exelon utility companies including Baltimore Gas and Electric, Delmarva Power, and PEPCO 

have offered to provide field-delineated wetland boundaries from past projects that can similarly 

serve as an additional set of ground truth data. The Conservancy will perform these analyses to 

strengthen the quantitative assessment of model performance in situ, and the results can be used 

to guide any potential fine-tuning of the model for improved performance. 

The assessment of model outputs by Ducks Unlimited indicated additional strengths, limitations, 

and potential next directions for the development of deep-learning wetland mapping. First, 

Ducks Unlimited staff expressed high confidence in the open-water class produced by the U-Net 

model, such that they would use these outputs to create open-water NWI wetland polygons 

instead of the existing 1 m resolution land cover data. The ability to automate the mapping of 

open-water wetlands (e.g., ponds, lakes, etc.) could expedite the creation of new NWI data 

relative to manual photointerpretation. Second, Ducks Unlimited staff reported that U-Net model 

outputs successfully identified and delineated forested wetland areas. Differences in the exact 

boundaries around these wetlands, and the five-meter horizontal accuracy requirement, precluded 

staff from automatically ingesting model outputs to create NWI forested wetlands. An 

outstanding question that the Conservancy identified is the degree to which discrepancies 

between model outputs and the polygons drawn by photointerpreters represent true differences in 

the accuracy. Remote wetland delineation involves some subjectivity, and it is impossible to 

ascertain ‘truth’ absent a site survey. Comparing both the U-Net model outputs and 

photointepreted polygons with field-delineated would help answer this question and potentially 



provide a path for incorporating forested wetland model outputs in NWI data production. Even 

absent the level of precision and confidence needed to directly incorporate model outputs into 

NWI data, the Ducks Unlimited team recognized the utility of the automated wetland mapping 

methods developed in this project to rapidly assess and update wetland presence information in 

new areas. These capabilities can be used in a number of other contexts such as performing rapid 

inventories of wetland loss, identifying areas requiring new manual delineation, and providing 

advanced guidance for in situ site surveys. 

In addition to the trained deep-learning models, this project delivered computational architecture 

and workflow that can be used to repeatably produce wetland data at large spatial scales (i.e. 

counties). We solved challenges related to accessing cloud-hosted data, data pre-processing, 

spatial reprojection and alignment, and parallel computing that can be leveraged in a more 

general way. This capability means that future efforts can focus on refining the deep-learning, 

statistical, or mechanistic models used to estimate wetland probability from input data, as these 

methods can be inserted into the current workflow. 

TABLES 

Table 1. NWI projects from which wetland vector data were used. 

 

 

 

 

 

 

Table 2. Crosswalk between original NWI wetland types and reclassified wetland categories used 

to train deep-learning models. Model outputs are the probability of membership in reclassified 

categories. 

NWI Wetland Type Reclassification Output Band Samples 

Non-Wetland Non-Wetland 1 10,000 

Estuarine and Marine Wetland Emergent Wetlands 2 1,628 

Freshwater Emergent Wetland Emergent Wetlands 2 903 

  Total 2,531 

Freshwater Forested/Shrub Wetland Forested Wetlands 3 15,311 

Freshwater Pond Open Water 5 564 

Lake Open Water 5 288 

Estuarine and Marine Deepwater Open Water 5 215 

Riverine Open Water 5 936 

  Total 2,003 

Other Farmed Wetlands 4 155 

  

NWI Project ID NWI Project Name Source Imagery Year # of Samples 

R05Y11P02 Chesapeake Bay Update 2013 5,916 

R09Y16P04 Virginia Fix 2013 1,729 

R05Y13P07 James River Updates 2012 3,845 

R06Y18P03 Mapping for Scalable Data 

Areas of New York 

2014 - 2017 963 

R05Y19P02 NWI Update for Eight 

West Virginia Counties 

2019 2,547 



Table 3: Accuracy metrics calculated on model evaluation data using the best-performing 

weights for each model. 

Model Precision Recall IoU 

Hierarchical 0.887 0.892 0.745 

U-Net 0.901 0.911 0.792 

 

OUTPUTS 

1. Model Training Data 

Provided as numpy (.npy) files containing 600 x 600 x N-pixel arrays of covariate input data. 

The filename provides metadata indicating the vintage, data type, array dimensions, and unique 

id of the array, delimited by ‘_’. All files are stored in an Azure Blob Storage container at: 

https://aiprojects.blob.core.windows.net/wetlands?si=CBP_NonTidal_deliverables&spr=https&

sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D 

 The directory structure within the Azure Blob Container is 

test 

|- train 

|- dem 

|- 2012_dem_360x360_1395362_1750747.npy 

|- … 

|- naip 

|- 2012_naip_360x360_1395362_1750747.npy 

|- … 

|- nwi 

|- 2012_nwi_360x360_1395362_1750747.npy 

|- … 

|- s1 

|- 2012_s1_360x360_1395362_1750747.npy 

|- … 

|- ssurgo 

|- 2012_s1_360x360_1395362_1750747.npy 

|- … 

|- eval 

|- dem 

|- naip 

|- … 

 

2. Trained Model Weights 

Best-performing model weights from the U-Net and Hierarchical models are provided as single 

keras weights (.hdf5) files in Azure Blob Storage Containers. The U-Net model can be accessed 

at: 

https://aiprojects.blob.core.windows.net/wetlands?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://aiprojects.blob.core.windows.net/wetlands?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D


https://aiprojects.blob.core.windows.net/wetlands/models/hierarchical/hierarchical_best_weights

_30Sep24_157.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-

02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D 

The Hierarchical model can be accessed at: 

https://aiprojects.blob.core.windows.net/wetlands/models/unet/unet_best_weights_12Sep24_172.

hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-

02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D 

3. County Wetland Data 

Rasters containing the probability of membership in either non-wetland, emergent wetland, 

forested wetland, farmed wetland, or open water in every pixel as estimated by the best-

performing U-Net model  are available as multiband Cloud-optimized geotiffs. These data are 

publicly available for each of 14 counties within the CBW at the following URLs: 

County Name County 

FIPS 

Cloud-Optimized Geotiff URL 

Amherst, VA  51009 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/amhe_51009/unet172/cogs/multiband.tif 

Allegheny, PA 42003 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/alle_42003/unet172/cogs/multiband.tif 

Cambria, PA 42021 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/cambria_42021/unet172/cogs/multiband.ti

f 

Dauphin, PA 42043 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/daup_42043/unet172/cogs/multiband.tif 

Fauquier, VA 51061 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/fauq_51061/unet172/cogs/multiband.tif 

Floyd, VA 51063 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/floy_51063/unet172/cogs/multiband.tif 

Howard, MD 24027 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/howa_24027/unet172/cogs/multiband.tif 

Jefferson, WV 54037 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/jeff_54037/unet172/cogs/multiband.tif 

Lancaster, PA 42071 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/lanc_42071/unet172/cogs/multiband.tif 

McKean, PA 42083 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/mcke_42083/unet172/cogs/multiband.tif 

Morgan, WV 54065 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/morg_54065/unet172/cogs/multiband.tif 

Montgomery, 

NY 

36057 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/mont_36057/unet172/cogs/multiband.tif 

Powhatan, VA 51145 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/powh_51145/unet172/cogs/multiband.tif 

Susquehanna, 

PA 

42115 https://cicwebresources.blob.core.windows.net/wetlands-

ai/data/inferencing/susq_42115/unet172/cogs/multiband.tif 

https://aiprojects.blob.core.windows.net/wetlands/models/hierarchical/hierarchical_best_weights_30Sep24_157.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://aiprojects.blob.core.windows.net/wetlands/models/hierarchical/hierarchical_best_weights_30Sep24_157.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://aiprojects.blob.core.windows.net/wetlands/models/hierarchical/hierarchical_best_weights_30Sep24_157.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://aiprojects.blob.core.windows.net/wetlands/models/unet/unet_best_weights_12Sep24_172.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://aiprojects.blob.core.windows.net/wetlands/models/unet/unet_best_weights_12Sep24_172.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://aiprojects.blob.core.windows.net/wetlands/models/unet/unet_best_weights_12Sep24_172.hdf5?si=CBP_NonTidal_deliverables&spr=https&sv=2022-11-02&sr=c&sig=wTXD4yHoAPIEEyVmeQr6ezN553vQyQJji9QXtmpzlJ4%3D
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/amhe_51009/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/amhe_51009/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/alle_42003/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/alle_42003/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/cambria_42021/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/cambria_42021/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/cambria_42021/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/daup_42043/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/daup_42043/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/fauq_51061/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/fauq_51061/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/floy_51063/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/floy_51063/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/howa_24027/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/howa_24027/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/jeff_54037/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/jeff_54037/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/lanc_42071/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/lanc_42071/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/mcke_42083/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/mcke_42083/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/morg_54065/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/morg_54065/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/mont_36057/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/mont_36057/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/powh_51145/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/powh_51145/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/susq_42115/unet172/cogs/multiband.tif
https://cicwebresources.blob.core.windows.net/wetlands-ai/data/inferencing/susq_42115/unet172/cogs/multiband.tif


 

4. Data Processing, Model Training, and Inferencing Code 

Python scripts used to access data from the Planetary Computer, process data, train deep-

learning models, and perform inferencing are available in a private GitHub repository: 

https://github.com/conservation-innovation-center/NonTidal_Wetlands 

Contact Michael Evans (mevans@chesapeakeconservancy.org) to obtain access. 

The workflow used to sample training data is provided in a Jupyter notebook in 

./notebooks/WetlandSampling.ipnb. Training and inferencing scripts are provided in the 

./local directory (e.g. ./local/train_unet.py, ./predict_unet_pc.py, etc.) This project repository 

relies on an external repo containing utility functions for working with Planetary Computer 

data, building deep-learning data ingestion tools, and building deep-learning models. When 

cloning the wetland repository, you will need to include the –recurse-submodules flag: 

git clone https://github.com/conservation-innovatin-center/NonTidal_Wetlands.git --recurse-

submodules 
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FIGURES 

 

Figure 1. Chesapeake Bay watershed (blue) study area showing the distribution of data 

sampling locations (points) and counties for which wetland data were produced (black 



polygons). Points indicate locations at which data used to train deep-learning models was 

sampled from within recently updated NWI projects. Point colors indicate the NAIP vintage year 

for a given NWI project. 

Figure 2. Receiver operating characteristic curve comparing performance of the U-Net and 

Hierarchical models as evaluated against NWI data in 10km2 test areas. Curves show the 

tradeoff in precision and recall for a series of probability thresholds used to categorize 

probabilistic model outputs into categorical wetland classes. 



 

Figure 3. Example of multiclass wetland probability outputs produced by the U-Net model in 

McKean County, Pennsylvania. Red areas indicate high probability of emergent wetlands, green 

areas indicate high probability of forested wetlands, and blue areas indicate high probability of 

open water. Black areas indicate a high probability of no wetlands. 



 

Figure 4. Example of multiclass wetland probability outputs produced by the U-Net model in 

Morgan County, West Virginia. Red areas indicate high probability of emergent wetlands, green 

areas indicate high probability of forested wetlands, and blue areas indicate high probability of 

open water. Black areas indicate a high probability of no wetlands. 

 



Figure 5. Comparison of existing NWI wetland data created in 1983 (a) and AI-identified 

wetlands (b). Images are from Dauphin County, PA. In both panels, green areas represent 

wetland areas, and blue lines represent open water. In the lower panel, red areas represent 

emergent wetlands. 


