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Introduction 
Stream channel mapping, particularly in headwaters, is critical for a suite of environmental 

applications including hydrologic and hydraulic modeling, soil conservation, wetland conservation, water 
quality analysis, and regulatory policy (Montgomery and Dietrich 1988; Hancock and Evans 2006; Baker 
et al. 2007; Julian et al. 2012). However, accurate mapping of channel heads is a long-standing challenge 
in geomorphology, largely due to the fact that channels form as a result of several different processes 
and because human activity can drastically alter both key processes as well as the geomorphic evidence 
used as criteria for delineation (Rodriguez-Iturbe and Rinaldo 2001). The complexity and variety of 
channel features often defies easy categorization, even by skilled interpreters, and thus complicates 
attempts at automated channel delineation. 

Improved automated tools are a practical necessity for accurate stream channel identification 
over broad landscapes, and the development of those tools has been an active subject of research for 
several decades. Although existing methods have achieved a great level of sophistication, they may also 
be prone to errors of both omission and commission. These errors occur in part because many existing 
methods try to detect idealized features derived from theory or empirical observations of natural 
landscapes that are ill-suited for landscapes altered by humans. The challenge lies in developing 
objective detection and mapping processes that extend across broad areas and adapt to different 
terrain or land use contexts. The current state-of-the-art in stream mapping techniques thus typically 
rely on direct-detection of channel-like features using terrain curvature (Wilson and Gallant 2000; 
Lashermes et al. 2007), or topographic openness (Yokoyama et al. 2002). 

 In this report, we present an approach for mapping stream headwaters utilizing geomorphons, a 
method that builds on concepts from computer vision to accurately classify terrain into discrete 
landform elements (Jasiewicz and Stepinski 2013). The geomorphon algorithm classifies each pixel in an 
elevation raster by assessing surrounding elevation along a line of sight in eight compass directions. 
Based on the arrangement of higher, lower, or equal elevations surrounding the focal cell, each pixel is 
classified into one of ten common landform elements, each referred to as a geomorphon. The ten 
landform elements include: flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit.  

 Geomorphons seamlessly incorporate geomorphic concepts like positive and negative openness. 
Further, stream channel delineation with geomorphons has many theoretical and practical advantages 
over other methods. In short, like many methods that directly interpret terrain features, geomorphons 
outperform other methods because they map “what is” rather than “what should be.” A key advantage 
of the geomorphon approach is its ability to identify features at multiple length-scales. The algorithm 
can be used to identify broad stream valleys and it can be constrained to identify stream channels within 
those valleys. In addition, the application of geomorphons for mapping stream channels is 
straightforward and computationally efficient.  

To provide verification for the approach developed in this work, the project team visited 14 
different field sites around the Chesapeake Bay watershed located in five different physiographic 
provinces: Appalachian Plateau, Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain. The data 
collected on these field visits provided on-the-ground context for the manner in which channels form 
and behave in different geographies and an evaluation of the applicability of various mapping methods. 
We use field data to compare the relative performance of geomorphons with other direct-detection 
techniques for accurately identifying the locations of channel heads.  
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This report is structured as follows: First, we present a literature review that links both 
mechanisms by which channels form and existing methods by which they are detected. Second, a 
methods section reviews the technical steps that we used to build stream maps at the 14 field sites, 
including comparing different approaches for detecting stream heads, as well as cartographic and 
geomorphic approaches for removing spurious detections and constructing a channel network. Third, a 
results section describes characteristics of the various outputs and details their relative performance for 
identifying and linking stream heads at the 14 field sites. Lastly, we conclude with recommendations 
including potential for improvement and next steps forward. 

Literature Review 
Channel formation 

There are several distinct natural mechanisms by which stream channels form. Channel heads 
result from hydraulic erosion from overland flow (saturation or Hortonian), seepage erosion where 
subsurface water intersects the land surface, mass failure, or any combination of the three (Dietrich and 
Dunne 1993). Hydraulic erosion results when a volume of water achieves a critical shear velocity. Thus, 
new channels may form during a discrete precipitation or melt event that adds excess water to a 
particular slope, when water accumulating in depressions is able to exceed the depression lip, or when 
terrain steepening provides excess power to existing runoff. By contrast, seepage can occur where sharp 
breaks in the terrain surface or springs lead to intersection with water tables. Otherwise, stable slopes 
and channel banks can be weakened by freeze-thaw action, leading to rapid extension of gullies without 
substantive overland flow. Mass failure (e.g., landslides) can occur following alterations to slope stability 
due to changes in the water budget from weather events, climatic shifts, forest fires, or human activity. 
Given the diverse mechanisms of channel formation, it is little wonder that most mapping approaches 
have focused on selected types of channel formation (i.e., hydraulic erosion) and the process that 
sustain them. 

Process-based methods 
Initially developed with coarse (>30 m) resolution terrain models, process-based predictions are 

derived from accumulations of upslope drainage area where minimum values of contributing area or 
“critical support area thresholds” that accommodate channels are directly analogous to Horton’s 
constant of channel maintenance (Horton 1932, 1945). Process-based methods are so-called because 
they do not delineate streams, but instead represent the process of water flow across the terrain 
surface; stream channels are inferred once sufficient water accrues from upslope drainage area. These 
procedures involve developing a directed flow field from interpretation of terrain surfaces (i.e., a flow 
direction surface; O'Callaghan and Mark 1984). The flow field is an implicit representation of a flow 
network, from which cumulative estimates of upslope drainage area (i.e., a flow accumulation surface) 
or specific catchment area (SCA; upslope contributing area per unit contour length; Wilson and Gallant 
2000) are developed. Under steady-state assumptions, thresholds of SCA are used to estimate Horton’s 
constant with a critical support area threshold, and gridded stream maps are developed from SCA values 
above this threshold (e.g., Band 1986; Maidment 2002). 

 Critical support area thresholds are the most widely used approach for delineating stream 
networks due to well-developed procedures and many software packages that automate their 
implementation (e.g., ArcGIS, ESRI 2011; ArcHydro, Maidment 2002; TauDEM, Tarboton and 
Mohammed 2013). The resulting maps are visually appealing because they produce a clean dendritic 
aesthetic. However, there are several well-described shortcomings of this approach that challenge its 
utility in serious mapping applications (Band 1986; Tarboton and Baker 2008). Importantly, such 
approaches conflate two distinct steps in stream delineation: flow tracing and channel initiation 
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(Jasiewicz and Metz 2011). Flow tracing follows the path of steepest descent to mimic idealized behavior 
of water in a flow field, whereas channel initiation involves additional inputs such as critical support area 
thresholds or channel head maps. Although constant support area thresholds are excellent at flow 
tracing, they typically underperform at identifying channel heads. Further, in the absence of additional 
information regarding channel head locations, the entire terrain surface must be processed in order to 
map channels.  

Interpretation of water movement over terrain requires a flow direction algorithm to route 
water across terrain surfaces, yet this is not always a straightforward process with LiDAR DEMs. The 
choice of algorithm (e.g., D8, D-infinity, or MD-infinity) can substantially alter estimates of SCA, 
especially for headwaters (Tarboton 1997; Seibert and McGlynn 2007). Moreover, their accuracy has 
also been found to be dependent on the resolution of digital terrain models (Zhang and Montgomery 
1994; Wilson and Gallant 2000; Tarolli and Tarboton 2006). Further, internal drainage or errors in the 
terrain model may hamper completion of the flow field, thus several approaches for filling, breaching, 
stream burning and DEM reconditioning to enforce drainage through sinks and dam-like features have 
been proposed and are in widespread use (e.g., Saunders 1999; Soille 2004; Tarboton and Baker 2008). 
These approaches resolve indeterminate flow directions by modifying the DEM to allow drainage, but 
may do so at the expense of accurate and realistic representation of flow patterns (Baker et al. 2006). 
Most importantly, critical support area thresholds do not actually use the topographic detail in LiDAR 
DEMs to map channel heads, instead channel initiation is estimated statistically from existing maps or 
field observations (Baker et al. 2007; Julian et al. 2013). Thus, critical support area thresholds have been 
widely criticized as a “one-size fits all” approach for mapping channel initiation points, with the potential 
for gross errors of omission and commission (e.g., Montgomery and Dietrich 1988; Baker et al. 2007; Luo 
and Stepinski 2008; Elmore et al. 2013). Specifically, although SCA estimates the relative accumulation of 
water in a local terrain, it relates nothing about specific climatic or edaphic factors that govern the local 
water balance or the terrain properties that drive water velocities and erosive forces. 

An important variant on the simple concept of upslope drainage is the slope-dependent critical 
support area (e.g., Montgomery and Dietrich 1988, 1992; Dietrich et al. 1993). Including local slope in 
predicting channel features is entirely reasonable because slope (S) and SCA are first-order factors that 
determine the erosive power of water (Montgomery and Dietrich 1988). Moreover, in humid soil-
mantled landscapes, their joint distributions delimit process domains within watersheds (Montgomery 
and Dietrich 1994). Process domains are areas of relative equilibrium among driving (e.g., water 
accumulation implied by SCA and S) and resisting (e.g., vegetation cover and soil erodability) forces 
(Schumm 1979). Hence, interpretation of S and SCA may delineate domains dominated by distinct 
mechanisms including diffusive erosion (e.g., rain splash erosion that forms convex topography) or 
confluent erosion that leads to channelization (Montgomery and Foufoula-Georgiou 1993; Montgomery 
and Dietrich 1994). When geomorphic thresholds are exceeded due to modifications of either driving or 
resisting forces, major changes in form occur as landscapes adjust to new equilibria (Schumm 1979; 
Poesen et al. 2003). Channel heads, in particular, are landscape features that reside at or near 
geomorphic thresholds at the transition between unchanneled and channeled valleys in natural 
landscapes, marking regions initiated and maintained by concentrated runoff that produces sufficient 
shear stress to erode particles (Begin and Schumm 1979; Patton and Schumm 1975). Therefore, channel 
heads represent the boundary between two distinct process domains.  

 Several different procedures have been proposed related to the use of S and SCA to identify 
thresholds of channel initiation. The earliest procedures describe breakpoints in trends between S and 
SCA revealed among terrain pixels binned across log SCA (Montgomery and Dietrich 1988; Montgomery 
and Foufoula-Georgiou 1993; Ijjasz-Vasquez and Bras 1995; Tucker and Bras 1998; Stock and Dietrich 
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2003). Such comparisons often reveal initial increases in S with increasing SCA associated with convex 
terrain near watershed boundaries. As SCA increases, S decreases rapidly as hillsides become concave, 
then less so with unchannelized valleys and channels. Qualitative interpretation was initially used to 
distinguish different process domains, but subsequent investigators have proposed various quantitative 
methods to determine breakpoints (McNamara et al. 2006). In addition, S-SCA products (i.e., ~S*SCA; 
power index) and reciprocals (i.e., ~SCA/S; topographic wetness index; Beven and Kirkby 1979) of local 
slope and SCA have been proposed as alternative indices for mapping streams (Wilson and Gallant 
2000).  

 The strength of process-based procedures is that they utilize the full distribution of topography 
and its arrangement to identify values of likely geomorphic thresholds in a manner consistent with 
theoretical mechanisms. The weakness of process-based procedures is that they do not represent all of 
the relevant mechanisms of channel initiation as much as their first-order drivers (i.e., water 
accumulation, slope). Further, such approaches do not include mitigating factors which can greatly alter 
those mechanisms and lead to errors of omission or commission in resulting maps, often associated with 
human activity (Heine et al. 2004; McNamara et al. 2006; Elmore et al. 2013). Recent models derived 
from these and similar approaches along the Atlantic coast of the US suggest that, although theoretically 
appealing and highly appropriate for certain landscapes, catchment-scale prediction of stream channels 
tends to underperform across heterogeneous physiographic and land use contexts (Heine et al. 2004; 
Baker et al. 2007; and Elmore et al. 2013). Process-based approaches assume the terrain is in pseudo-
equilibrium with climate and extant land cover, thus their products are often a reasonable estimate of 
the landscape as it “should be” according to theory, rather than what actually exists. Work in developing 
countries or under scenarios of changing land cover (McNamara et al. 2006, Bezerra et al. In review) 
suggest that S-SCA thresholds are not indicative of existing channel head locations. Further, historical 
modification of landscapes can leave geomorphic legacies that disrupt empirical linkages between 
process-based theory and field observations, even when process-based mechanisms remain in 
operation (Smith and Wilcock 2015).  

Direct-detection methods 
As improvements in DEM resolution have become widely available, efforts at stream mapping 

have shifted from theoretical depictions of key processes to direct-detection techniques. This shift in 
focus emerged in response to substantial errors observed in process-based models or when natural 
processes could not be presumed (i.e., on Mars), and are largely based on interpretation of aerial 
imagery or local elevation derivatives such as curvature thresholds for mapping channel networks 
(Howard 1994; Wilson and Gallant 2000; Tarboton and Ames 2001; Molloy and Stepinski 2007). Early 
detection methods used local terrain to identify channel heads by comparing elevations within blocks of 
four pixels (Peuker and Douglas 1975) linked by accumulation over a flow field (Band 1986; Tarboton 
and Ames 2001). More recent efforts have focused instead on estimates of terrain curvature calculated 
across blocks of eight neighbors of a focal cell, specifically planform or tangential curvature 
(perpendicular to the slope direction), for distinguishing upwardly concave hillslopes and areas of 
convergent flow (Luo and Stepinksi 2006, 2008; Molloy and Stepinski 2007; Passalacqua et al. 2010). 
Such approaches rely on empirical estimates of terrain curvature independent of catchment conditions 
to identify hollows and depressions that, when they occur as groups of pixels in long, linear features, are 
a necessary (but not sufficient) property of mapped stream channels.  

A fundamental but often overlooked advance in terrain analysis emerged from the 
quantification of multi-scale measures of terrain curvature termed topographic openness (Yokoyama et 
al. 2002). Measures of openness were developed as the maximum slope angle between a focal point 
and other peaks (positive openness; φ) or depressions (negative openness; ψ) defined at variable length 
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scales across the landscape surface. Positive openness may be understood as an analysis of line-of-sight 
from each pixel in eight different directions over a bare earth surface. The relative elevation and 
horizontal distance of each of the eight points that constrain their respective lines-of-sight describe 
eight maximum slope angles, which are then averaged. Negative openness is the same concept 
measured from below, rather than above, the terrain surface. Sofia et al. (2011) integrated measures of 
both topographic openness and curvature in predictions of stream channels in the Italian Alps, whereas 
Jones (2013) and Jones et al. (2014) found that simple thresholds of negative openness (i.e., ψ) resulted 
in reasonably accurate measures of channel head locations for several watersheds within the Maryland 
Piedmont using multi-temporal LiDAR.  

An important advantage of direct-detection over process-based approaches is that they provide 
evidence of a channel-like morphology regardless of their position relative to upstream catchments. In 
other words, direct-detection provides an estimate of “what is” rather than “what should be”. 
Impractical in coarser representations of terrain, such interpretation has become possible with datasets 
developed from aerial LiDAR. Availability of high-resolution (<2 m) terrain information makes detection 
of valley bottoms and stream channels far more precise in many landscapes (Heine et al. 2004; Tarolli 
and Dalla-Fontana 2009), but can be limited in narrow valleys with dense vegetative cover (James et al. 
2007). The challenge for direct-detection lies in developing objective identification and mapping 
processes that extend across broad areas and adapt to different terrain or land use contexts.  

A second important limitation of direct-detection from elevation derivatives such as slope or 
curvature is that, because they are calculated from the values of the eight adjacent pixels, their 
performance is directly related to the resolution and the point density of the underlying terrain model 
(e.g., Wilson and Gallant 2000; James et al. 2007; Tarolli and Dalla Fontana 2009). Research has 
suggested that the value of curvature in detecting channel heads can be scale dependent, and that 
critical scales of curvature necessary for channel head formation can vary with different landscape 
contexts (Lashermes et al. 2007; Pirotti and Tarolli 2010). Lashermes et al. (2007) suggest that threshold 
measures of curvature for identifying channels are likely to generate errors unless first examined for 
region-specific power law behavior. That is, the authors advocate for analysis of nonlinear breaks in the 
log-log relationship of terrain curvature values and pixel resolution to identify the most appropriate 
scale for detecting channel heads in each region of interest. However, apart from being a 
computationally intensive exercise, this assertion continues to presume relative homogeneity in channel 
generating processes and underscores an inherent shortcoming of local measures. By contrast, 
openness measures are generated from a terrain analysis that is inherently multi-scale, thus openness 
algorithms offer a relatively straightforward opportunity to automatically adapt to local terrain and land 
use conditions.  
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Geomorphons  
As an application of openness in terrain classification, geomorphons are scale- and orientation-

independent geomorphic features that constitute bare-earth terrain (Jasiewicz and Stepinski 2013). 
Geomorphons can be processed from DEMs through an extension (r.geomorphon) to the free and open-
source GRASS GIS platform (GRASS Development Team 2017). Geomorphons assess elevations along 
lines-of-sight in eight directions surrounding each pixel of the study area, out to a user-specified search 
distance. A different landform type is assigned based on the observed ternary pattern of higher, lower, 
or equal elevations surrounding the focal pixel, as depicted in Figure 1 below. 

 
Figure 1: Forms represented by geomorphons (left). Lookup table used to aggregate geomorphons into common forms (right). 
Source: https://grass.osgeo.org/grass74/manuals/addons/r.geomorphon.html 

There are precisely 498 unique patterns identified by the ternary approach. Of these 498 
theoretical landforms, the 30 most common types account for 85% of all cells and this group can be 
further reduced to 10 most recognizable landforms using the lookup table in Figure 1. These landforms 
are: flat (FL), peak (PK), ridge (RI), shoulder (SH), spur (SP), slope (SL), hollow (HL), footslope (FS), valley 
(VL), and pit (PT). A sample of a landscape classified using geomorphons is illustrated in Figure 2. 

 
Figure 2: Example of geomorphon results. Source: https://grass.osgeo.org/grass74/manuals/addons/r.geomorphon.html 
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The scale of geomorphons is flexible and automatically adapts to differing terrain. This 
adaptation occurs because features are classified based on line-of-sight criteria instead of differential 
geometry within a fixed window as in other direct-detection methods (e.g., curvature; Passalacqua et al. 
2010). Line-of-sight analysis is constrained by a user-specified search distance that determines the 
maximum extent over which features can be identified. With a larger search distance, features can be 
identified across broader extents. However, landform classifications quickly converge over increasing 
search distances, as the line-of-sight approach adapts to local terrain. See Figure 3 below for an 
example: 

 
Figure 3: Terrain features classified by geomorphon converge as search distance is increased. There is minimal difference 
between the map produced with 20-pixel search radius and the ones produced with 30- or 50-pixel search radii on a 30-meter 
DEM. Source: Jasiewicz and Stepinski, 2013. 

The flexible, self-adapting property of geomorphons is both desirable and exploitable for stream 
channel mapping. It allows rapid identification of broad stream valleys without the need for multiple 
search distances, thus improving computational efficiency. Intentionally small search distances can also 
be used to isolate and identify local-scale features such as channel-like depressions. In this case, the 
search distance is restricted to be smaller than the width of the surrounding valley, so the geomorphon 
algorithm is unable to perceive valley topography. Instead, it detects local depressions as valley, pit, or 
hollow features and delineates them as such, when in reality they are channels within a broader valley 
feature. The application of geomorphons at both the “valley-extent” and “channel-extent” is described 
in more detail in the methods below.  

When it comes to detecting channel-like depressions, we expect geomorphons to be superior to 
both terrain curvature and topographic openness as a direct-detection method for the following 
reasons. Both geomorphons and openness rely on line-of-sight criteria that allow interpretation of 
terrain over variable extents. Thus, their ability to detect features broader than 3 pixels wide should be 
as good as, or superior to, curvature. We expect identification of smaller channels less than 3 pixels to 
be similar across all techniques, but that geomorphons and openness should produce more contiguous 
output than curvature across broader channels and along most channel lengths. Therefore, while we 
expect the headward extent of detection to be similar across all methods, we expect geomorphons and 
openness to produce fewer errors of omission than curvature in the overall detection of channel-like 
features and their contiguity.  

We expect geomorphons to outperform openness in delineating channel features because 
geomorphons automatically integrate both positive and negative openness to provide more information 
about the terrain than either measure could provide independently. We will test this expectation by 
direct comparison, but also by developing predictions based on our own custom combination of positive 
and negative openness to more fully assess the results. By further interpreting the integrated openness 
information and classifying terrain into discrete features, geomorphons automatically distinguish local 
terrain signals associated with features such as footslopes that could otherwise be confused with, and 
misinterpreted as, channels by openness alone. Thus, we expect geomorphons to produce fewer errors 
of commission than openness. From a practical standpoint, the r.geomorphon algorithm offers greater 
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flexibility and control of the search radius inherent to openness and, at no additional computational 
cost, produces a number of outputs describing the terrain in addition to the ternary forms. Therefore, 
geomorphons represent value-added over the openness technique alone. 

Cartographic and geomorphic elimination 
A relevant limitation of all direct-detection methods is that, because they are developed from 

local topography, they can produce noisy output due to inherent error in LiDAR data or imprecise 
detection criteria. Sofia et al. (2011) recommended integrating noise into estimates of channel 
prediction uncertainty. Noise reveals itself as many small depressions of just one or a few pixels in size, 
but it can also produce spurious errors in resulting stream maps or, conversely, can reduce the 
functional connectivity of resulting channel networks. As a result, several authors (Passalacqua et al. 
2010; Pelletier 2013) advocate for noise elimination through DEM filtering or denoising. Denoising is an 
image processing technique derived from signal processing theory that has the advantage of removing 
spurious elevation values without degrading underlying signal (e.g., edges) in the original input (Sun et 
al. 2007). Yet even after denoising, many channel mapping protocols that rely on direct-detection utilize 
areal thresholds to further eliminate small, isolated depressions that are unlikely to be part of a channel 
system (Passalacqua et al. 2010; Sofia et al. 2011; Passalacqua et al. 2012; Sangireddy et al. 2016, 
Hooshyar et al. 2016). Passalacqua et al. (2010) originally coined the resulting patches of channel-like 
depressions above such threshold values a “skeleton”. Because such areal thresholds have no basis in 
geomorphic theory but are recommended solely to enhance analytical integrity, we term such 
elimination as “cartographic”. 

By contrast, other authors advocate for elimination of spurious channel-like depressions based 
on geomorphic principles. After all, channels represent a specific form of process domain typically 
associated with valleys (Montgomery and Dietrich 1994). Sofia et al. (2011) took a probabilistic 
approach, requiring cumulative agreement among skeletons derived from curvature as well as 
openness. Jasiewicz and Metz (2011) advocated for using valleys to isolate channel skeletons, whereas 
Hooshyar et al. (2016) attempt to isolate both valley and channel skeletons. In each case, the authors 
used the geomorphic context of a depression as justification for inclusion in or elimination from the 
channel skeleton. The rationale for geomorphic elimination is that valleys are a logical place to find 
stream channels in natural terrain. We agree that geomorphic elimination represents a sound initial step 
to be preferred over cartographic elimination when possible, but caution that such techniques may not 
be sufficient for identifying all channels in human-modified terrain. In such contexts, channels may form 
as a result of concentrated runoff redirected by land development and skeletons may be fragmented by 
road crossings (Passalacqua et al. 2012). Thus, elimination of spurious channel-like features needs to be 
able to identify channels occurring in appropriate geomorphic contexts and those originating from 
anthropogenic sources while eliminating spurious features. 

Methods 
This section details the steps taken to develop stream channel maps for the 14 study 

watersheds. First, we describe the methods used to carry out the field assessments at the study sites, 
then we describe our empirical evaluation of direct-detection channel maps including: processing 
elevation data; generating calculations of curvature, openness, and geomorphons; manipulating these 
layers to delineate channel skeletons; and assessing their performance relative to field observations. 
Next, we develop linear stream networks from geomorphon channel skeletons and consider methods 
for determining channel width and bank height. Lastly, we discuss the estimation of flow permanence. 
An overview of these steps is presented in Figure 4. 
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Figure 4: Overview of channel mapping workflow. Input data are shown in blue ovals, processes are shown in gray rectangles, 
and data products are shown in green ovals.  

Fieldwork  
To assess the performance of geomorphons and other methods at accurately mapping channel 

features, the project team visited 14 field sites around the Chesapeake Bay watershed in the spring and 
summer of 2017. In addition to collecting data on the location of channel heads and their flow status, 
the purpose of the field visits was to provide on-the-ground context and field-verification of features 
observed through GIS mapping efforts. Fieldwork enabled the project team to interpret terrain data and 
its derivatives with first-hand knowledge of the conditions on the ground at the study watersheds. This 
was valuable as some features that appear as errors in a GIS environment, such as disconnected streams 
or valleys, are in fact real features when observed through field visits.    

Field sites were selected such that the field crew visited each of the physiographic provinces in 
the Bay watershed and, where possible, at least two distinct land use contexts in each province (Figure 
5). These land uses included forested, developed, and agricultural. Selecting field sites in this way 
allowed the field crew to assess the influence of physiography and its interaction with land use on 
channel initiation and algorithm performance.  

Prior to each field visit, the field crew assessed LiDAR elevation data and derivatives to inform 
the visit. Based on this assessment, likely channelized valleys were identified and headward extents 
were predicted from visual interpretation of hillshades. At each field visit, typically starting from the 
downstream end of the study watershed, the field crew walked upstream to areas of interest previously 
identified. The positional location of channel features like flowing water, occurrence of channel heads, 
locations of active erosion and channel incision, as well as any channel discontinuities were recorded. All 
features were photographed using a geotagging-enabled smartphone so that their locations could be 
imported in a GIS environment and used to assess stream mapping methods.  
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Figure 5: Map showing location of field sites across Chesapeake Bay watershed with physiographic province information 
overlaid.  

Processing elevation data 
Elevation data were crucial to the delineation of stream networks. Several sources of elevation 

data were used in this project including digital elevation models (DEMs) created from various LiDAR 
collections and the seamless, 10-meter resolution National Elevation Dataset (NED), available from the 
U.S. Geological Survey (Gesch et al. 2002). The NED was used to identify valleys at a broad extent, a task 
that does not necessarily require the level of detail in LiDAR DEMs, while the LiDAR DEMs were used to 
delineate channels at a local extent within the valleys.  

To remove noise and allow for cleaner and more contiguous feature identification, LiDAR 
elevation data are often denoised or smoothed using a feature-preserving filter (Passalacqua et al. 2010, 
Lashermes 2007). We pre-processed LiDAR DEMs using a mesh-denoising filter (Sun et al. 2007; 
implemented in SAGA GIS, Conrad et al. 2015) prior to using them as input to calculations of 
geomorphons, curvature, or openness. Mesh denoising of LiDAR DEMs removes irregularities in a 
surface while preserving features and edges. Similarly, the 10-meter NED was smoothed to allow better 
identification of broad stream valleys using geomorphons. While the coarser resolution NED inherently 
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eliminates much of the noise found in high-resolution LiDAR data, larger anthropogenic features such as 
bridges may still be present and cause undesired interruptions to stream valleys. A Gaussian filter was 
applied to generalize the terrain and reduce the distinct signal from roadways and similar anthropogenic 
features. 

Detecting channel-like depressions 
Based on the literature review above, it was clear that local terrain curvature remains the 

default method for detecting depressions in modern mapping methods. Topographic openness has been 
suggested as well, but it was unclear how to best identify channel-like features using its output maps. 
However, a generalized method is critical for automated mapping because it allows for objective 
processes to be performed across all land use and physiographic contexts. Following the suggestion of 
Lashermes et al. (2007), we performed a threshold analysis on terrain curvature (default curvature 
output calculated using the Curvature tool in ArcGIS Spatial Analyst toolbox), and negative and positive 
openness (calculated using the Topographic Openness tool in SAGA GIS using a search radius of 10 
meters) rasters to isolate channel-like depressions of interest for each of our study sites. To identify 
these thresholds, QQ normal plots were analyzed for inflection points that distinguished extremes from 
the majority of values (see Appendix A). Pixels in the curvature and openness rasters exceeding these 
thresholds were retained as depressions of interest. A unique combination of positive and negative 
openness was used to create a depression map more directly comparable to geomorphons. This map 
was created by first isolating threshold positive openness pixels that were contiguous with pixels of 0.75 
acres contributing area or greater, then isolating threshold negative openness pixels contiguous with the 
previous isolation.  

 Geomorphons were calculated using the r.geomorphon extension of the free and open source 
GRASS GIS 7.2.2 on Windows 7. r.geomorphon has five required user-input parameters that can be 
customized to produce a landform classification map tailored to the user’s needs. The five required 
parameters are elevation, outer search radius, inner search radius, flatness threshold, and flatness 
distance. Several optional outputs provide additional information about the geometry and relative 
position of geomorphons in the surrounding terrain. To detect channel-like features using 
geomorphons, the outer search radius was set to a relatively small distance of 10 meters in order to 
constrain the line-of-sight analysis to the terrain immediately surrounding the focal cell. An inner search 
radius was not specified so that pixels immediately adjacent to the focal cell were included in the 
analysis. By using this combination of search radii with a detailed LiDAR DEM, channel banks were 
interpreted as valley walls, thus channel-like depressions were classified as valleys or pits (Figure 6). 

For most study sites, it was not possible to directly compare threshold values of curvature, 
openness, and classified geomorphon rasters with field observations without first eliminating some of 
the pixels identified in each map. Curvature and openness maps in particular often exhibited many 
pixels or groups of pixels above threshold values that were clearly not part of the stream network, but 
would nonetheless need to be considered in an automated method. Thus, we decided to focus our 
comparison of methods on the channel skeletons that result from further processing and elimination of 
noise from initial depression maps.  

Constructing channel skeletons 
According to Sangireddy et al. (2016), their method relies on accumulation of threshold pixels 

over a flow field to perform an initial elimination of spurious depressions. The approach is based on the 
geomorphic conceptualization of channel heads occurring on the lower portion of hillslopes with 
somewhat larger contributing areas than divides. Passalacqua and Foufoula-Georgiou (2015) provide 
some suggestions for how to determine the accumulation value from ½ the median hillslope length 
within a region. We applied a moderate contributing area threshold of 0.75 acres (Passalacqua et al. 
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2010) to maps of curvature, positive openness, negative openness, and geomorphons as an initial form 
of geomorphic elimination. 

For geomorphon maps, we followed the suggestions of Jasiewicz and Metz (2011) and Hooshyar 
et al. (2016) and used delineation of river valleys as a separate initial geomorphic elimination of spurious 
depressions. To delineate river valleys, we first employed the Gaussian filtered 10-meter NED as the 
input elevation grid to r.geomorphon. The outer search radius, which constrained the line-of-sight 
analysis, was set to 200 meters – a distance sufficiently large to encompass headwater stream valleys. 
An inner search radius, also referred to as a “skip” radius, was also specified. This parameter further 
constrains the line-of-sight analysis such that any pixels between the focal cell and the skip radius are 
not considered in the calculation of geomorphons. We specified a 20-meter skip radius to prevent 
channels and other local irregularities from interrupting the line-of-sight and allow better detection of 
broader features like valley walls (Figure 6). These settings were used to generate a classified map of 
geomorphons at the “valley-extent” for the entire Chesapeake Bay watershed  

To better distinguish features in the valley-extent geomorphon map that were associated with 
stream valleys, we focused on convergent features that were clearly connected to larger order fluvial 
systems. The connected valley network thus consisted of all pit, valley, and hollow1 geomorphons from 
the valley-extent geomorphon map that were contiguous with a rasterized version of the NHDPlus High 
Resoultion (NHDPlus HR) stream network (U.S. Geological Survey 2017). Valley contiguity was defined as 
all pit, valley, and hollow cells directly overlapping with the NHDPlus HR or connected to it through 
other pit, valley, and hollow cells. We used the resulting connected valley network as a geomorphic filter 
to eliminate channel-like depressions identified by geomorphons at the channel extent that were not 
contained by or contiguous with the valley network.  

Following geomorphic elimination of spurious depressions by either flow accumulation or 
contiguity with a valley network, we employed a cartographic elimination on the remaining depressions 
identified by all methods. Here our goal was to remove small groups of spurious pixels erroneously 
identified as channels. We used the Region Group operation in ArcGIS to calculate the number of pixels 
belonging to each discrete group of depressions remaining after geomorphic elimination. A histogram of 
the size distribution was created where the first bin contained a disproportionately large number of very 
small depressions. This bin was used as an areal threshold for elimination of small, isolated clusters of 
pixels likely to be noise (Passalacqua et al. 2010). The remaining pixels formed the channel skeletons for 
each detection method that were compared relative to field observations.   

Comparing detection methods  
 With channel skeletons developed by applying various elimination techniques to channel-like 
depressions identified using curvature, openness, or geomorphons, we assessed their relative 
performance in predicting channel head locations. This was accomplished by measuring the distance 
along a flow line between the headward extent of the channel skeletons and channel heads observed 
during field visits. Positive distances indicated commission in the detection method (i.e. predicted 
channel head was upslope of observed head), whereas negative distances indicated omission in the 
detection method (predicted channel head was downslope of observed head). A distance of zero 

                                                           
1 Hollows with a negative intensity were included. The sign and magnitude of the intensity value describe the degree to which 
the focal pixel is above (positive intensity) or below (negative intensity) the cells comprising its visibility neighborhood. Cells 
classified as hollow with a negative intensity are convergent, typically located at the headward extent of stream valleys or the 
junction of steep tributaries and a flatter valley, and thus were included in our valley network.    
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indicated an entirely accurate prediction by the detection method (predicted channel head and 
observed channel head coincide). The recorded distances were analyzed using statistical summaries 
including median, mean, standard deviation, root mean square error (RMSE), as well as graphical 
summaries such as box plots. Commission and omission frequencies were also analyzed. We tested for 
differences in among group variance using Levene’s Test. Due to differences in sample sizes and 
variance across factors, we tested for significant differences among land uses and physiographic 
provinces using a non-parametric Kruskall-Wallis procedure. 

 The goal of this comparison was to better understand the relative costs and benefits of using 
various automated procedures in different land use and physiographic contexts; not necessarily to 
establish one approach as superior to another in minimizing distance to the observed heads. Indeed, as 
far as direct-detection methods were concerned, our initial expectation was that all approaches would 
be relatively similar. However, we were particularly concerned by the potential for large or frequent 
errors of commission (i.e., predicting a channel that did not truly exist) and less concerned with errors of 
omission because some omission is an accepted feature of current national maps (i.e., NHD maps 
produced at 1:100,000 scale will inherently have fewer streams than those at 1:24,000 scale). A 
secondary goal was to examine the relative impacts of the geomorphic and cartographic elimination 
procedures on depression maps. Further, we wanted to understand whether there was differential 
impact associated with factors such as land use, physiography, or detection method. We accomplished 
this by analyzing pixel counts of depression maps from all methods before and after geomorphic and 
cartographic elimination. 

 
Figure 6: Geomorphons calculated in the same location at the valley extent (top) and channel extent (bottom). Note that the 
search parameters have a substantial impact on the resulting landform classification map. 
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Constructing the channel network 
 While the two-dimensional channel skeleton delineated using geomorphons can be a useful 
product for applications concerning edge-of-stream zones and channel discontinuities, other 
applications require a connected linear stream network, akin to traditional hydrographic maps. This type 
of network can be constructed using the geomorphon channel skeleton and a cost surface to perform a 
cost connectivity analysis. The cost surface incorporates the channel skeleton and other convergent 
features in the geomorphon map with elevation values from the DEM to give preference to paths 
following convergent features at lower elevations, and to penalize other features. When creating the 
cost surface and using it to connect channel features, the DEM can be constrained to the extent of the 
broader valley network to eliminate unnecessary processing of the entire terrain surface. Pixels in the 
cost surface coinciding with the channel skeleton were assigned a cost equal to the DEM elevation for 
the pixel; pixels in the cost surface not belonging to the channel skeleton but classified as hollows in the 
geomorphon map were assigned a cost equal to 5x the DEM elevation at the pixel; all other pixels in the 
cost surface were assigned a cost equal to 100x the DEM elevation. Creating the cost surface in this way 
encouraged the cost connectivity algorithm to connect regions of the channel skeleton along convergent 
features at low elevations, however, it also enables direct connections across roads or other convex 
features when a lower-cost path is not available. 

 The output line network from the cost connectivity analysis and the channel skeleton were 
then “burned” into the DEM, so that their elevations were ten units lower than the remainder of the 
terrain in the DEM. Sinks in this DEM were then filled and D8 flow directions were calculated. Using the 
flow direction surface, a weighted flow accumulation was performed using the channel skeleton as a 
weight raster. This operation accumulated only those pixels belonging to the channel skeleton, resulting 
in a raster where pixel values greater than zero begin at the very headward extent of the channels 
identified by geomorphons, and values increase in the downslope direction along the channel skeleton. 
A small threshold (e.g.; 20 pixels) was applied to remove values of zero and very short segments from 
the weighted accumulation raster, so that a linear stream grid could be obtained. This grid is analogous 
to the stream source grid used by TAUDEM (called “src” by default) and the stream grid used by 
ArcHydro (called “Str” by default) and can be used as input to ArcHydro/TauDEM tools to segment 
streams, convert streams to polylines, and assign network connectivity (i.e. add unique identifiers 
linking flow from one segment to the next downstream segment).  

 Shortly before the submission of this report, the project team began exploration of the 
GRASS GIS add-on r.stream.extract (Jasiewicz and Metz 2011), which can quickly and efficiently 
automate the process of stream tracing using a cost surface derived from a DEM, similar to the method 
described above. This add-on is capable of identifying stream initiation points via a flow accumulation 
search algorithm and tracing them downslope, but it can also trace streams from previously identified 
stream heads or fragments of stream routes identified through field or cartographic studies. We are 
currently exploring the potential to use the channel skeleton identified from geomorphons as input to 
r.stream.extract as a means to connect the skeleton into a linear network. Initial results are promising 
and exploration will continue in future work.   

Estimating channel width and bank height 
Development of a linear channel network represents a powerful and potentially useful 

framework for summarizing distributed estimates of channel width and bank height. Prior to summary, 
it is possible to use the channel skeleton itself to obtain estimates of both parameters. Using the area 
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outside the skeleton as a “source grid” and the skeleton as a “cost surface” in a Cost Distance function 
within ArcGIS, it is possible to map the distance from each stream bank within the region of pixels that 
constitute the channel. This distance surface decreases with proximity to each bank, reaching a 
maximum at or near the channel midpoint. With this distance surface as input to a circular Focal 
Maximum function with a radius of 10-20 meters, the largest width estimates (from channel bank to 
center) can be isolated and doubled to estimate the width (from bank to bank). Alternatively, it is 
possible to convert the channel skeleton raster into polygons and use them as input to the Polygon to 
Centerline tool in ArcGIS Pro. The resulting centerlines can be used to extract cost distance values along 
the channel skeleton that should be doubled to estimate channel width. Either way, results produce a 
distributed estimate of channel width that varies with physiographic constraints and may be aggregated 
or summarized across segments of the channel network. 

Bank height estimates can be obtained from the integration of optional outputs from 
r.geomorphon. One output, called the intensity raster, describes the average elevation of the eight 
maxima or minima that constrain lines-of-sight across all eight transects for every focal pixel. For pit 
geomorphons, all eight transect constraints are higher than the focal pixel, so the value of the intensity 
raster is a relative estimate of surrounding high points (i.e., top of banks). For valley geomorphons, there 
can be 5, 6, or 7 transects higher than the focal pixel, and in each case the remaining transects may be 
equal or lower than the focal pixel (see classification table in Figure 1). A second optional output of 
r.geomorphon produces the ternary code for each geomorphon pixel. The ternary code specifies the 
relative elevation for each transect constraint (i.e., higher, lower, or equal). Using a custom look-up 
table developed by PI-Baker in a separate research effort, intensity values were converted to the 
average elevation of only those points higher than the focal pixel, as described by the ternary code. 
These values are used as an estimate of bank height. Empirical evaluation (outside the scope of this 
report) has suggested that this is often a very reasonable estimate, or precisely analogous to what would 
be obtained from a cross-section of the DEM. Bank height estimates are thus obtained for every pixel in 
the channel skeleton, or potentially hundreds to thousands of estimates in any particular stream reach. 
The Central Limit Theorem suggests that even large error in individual pixelate estimates will become 
vanishingly small across reaches and segments of the channel network, as summaries converge on the 
actual value.  

Estimating flow permanence  
We estimated flow permanence (perennial, intermittent, or ephemeral) by calculating regional 

low flow statistics and relating low flows to drainage area. First, we used the newly available Surface 
Water Toolbox created by the USGS (SWToolbox, Kiang et al. 2018) to estimate seven-day two-year low 
flows (7Q2) at stream gauges in and around our study areas. 7Q2 is defined as the lowest mean 
discharge over any seven consecutive days with a recurrence interval of 2 years. The toolbox enables 
estimates to be calculated on a month-to-month basis. To estimate flow permanence, we examined 7Q2 
in January and July. These two months were chosen because in January we can expect low levels of 
evapotranspiration (ET), higher groundwater levels, and thus a higher 7Q2. In July, we can expect the 
opposite: high ET, low groundwater levels, and low 7Q2. Thus, if a stream’s 7Q2 is functionally zero in 
January, we considered the stream to be ephemeral; if the 7Q2 is greater than zero in January but 
functionally zero in July, the stream was considered to be intermittent; if the 7Q2 is greater than zero in 
both January and July, we considered the stream perennial. Because the equations used to calculate 
7Q2 rarely return zero, we accepted a 7Q2 of 0.1 cubic feet per second (cfs) to be functionally zero.  

SWToolbox does not currently have the capability of estimating 7Q2 on ungauged streams and 
while this functionality is built into another USGS tool, StreamStats (Ries et al. 2017), StreamStats does 
not calculate low flow in all geographies and thus was unsuitable for our application. Because nearly all 
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of the streams in our study sites are ungauged, we used linear regression to relate drainage area to 7Q2 
estimates at stream gauges surrounding our study sites, estimated using SWToolbox. We then used 
these relationships to determine the drainage area needed to support 0.1 cfs in January and July so 
stream reaches could be classified according to the criteria set forth in the previous paragraph. For 
example, if the regression determined that 0.75 square miles were needed to generate a 7Q2 of 0.1 cfs 
in January and 1.0 square miles (sq. mi.) were needed in July, sections of the stream network with a 
contributing area smaller than 0.75 sq. mi. would be classified as ephemeral, sections with contributing 
area between 0.75 and 1.0 sq. mi. would be classified as intermittent, and sections with contributing 
area greater than 1.0 sq. mi would be classified as perennial. For details on the regressions and drainage 
area thresholds for each site, see the results section below.  

Results and Discussion 
Processing DEMs 

Mesh denoising removed some of the pixelate noise in LiDAR DEMs and the resulting curvature, 
openness, and geomorphon maps derived from them, without removing the topographic signal of 
features in the terrain. In geomorphon maps specifically, features identified using denoised DEMs were 
more contiguous and well defined (Figure 7). The improved contiguity of features had an impact on 
cartographic elimination of channel-like depressions, resulting in larger areal thresholds being identified 
and fewer spurious features meeting the criteria for inclusion in the final channel skeleton.  

The Gaussian filtering of the 10-meter NED resulted in a smooth, generalized representation of 
the terrain surface that retained large, landscape-scale features such as stream valleys (Figure 8). The 
topographic signal from anthropogenic features including roads and bridges was largely removed. As a 
result, the valleys delineated using geomorphons at a broad extent were more contiguous.  
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Figure 7: Comparison of hillshade (top), channel-extent geomorphons (middle), and channel skeleton (bottom) using unaltered 
LiDAR DEM (left column) and mesh denoised LiDAR DEM (right column). Geomorphons and channel skeleton derived using 
denoised DEM are less fragmented and more contiguous overall.  



21 
 

 
Figure 8: Comparison of unaltered 10-meter NED (top) and Gaussian smoothed NED (bottom). Several bridges that interrupt the 
stream valleys in the unaltered NED have been largely removed from the smoothed NED while still retaining the overall 
characteristics of the valleys and surrounding landscape.  
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Comparison of detection methods 
Channel skeletons for depressions identified by curvature, negative openness, positive 

openness, and geomorphons were developed to assess their potential for automated application. 
Combined openness skeletons were also developed for direct comparison with geomorphon skeletons 
(which also integrate positive and negative openness). Two geomorphon skeletons were developed: one 
from the same accumulation-based thresholds as the others (i.e., channel-only geomorphon), and 
another using geomorphic elimination by valley extent (i.e., valley network geomorphon). We compared 
estimates of channel head location from each of these methods to locations identified and mapped 
from field visits. The field observations were not an exhaustive inventory, but rather a representative set 
selected across each study site based on land use, physiography, and accessibility. For each method, we 
assessed the distance between each observed channel head and the closest headward extent of each 
channel skeleton (Figure 9). 

 
Figure 9: Comparison of channel skeletons delineated using (A) curvature, (B) negative openness, (C) positive openness, (D) 
openness combination, and (E) geomorphons (geomorphic elimination by valley extent). White points represent observed 
channel heads. Although the methods generally performed similarly, marked local examples of commission were often noted for 
positive openness (C) and greater omission was observed for negative openness (B). Overall, combined openness and 
geomorphons appeared marginally more effective and contiguous than curvature, as expected.  
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Distances between channel heads at each site and those predicted by channel skeletons showed 
a similar range of variability across detection methods (Table 1). Root mean square error (RMSE) ranged 
from 205 m with the combined openness measurements to 954 m with negative openness. The median 
discrepancy indicated that all methods were more likely to under-predict the upstream extent of 
channel heads, but only by a few tens of meters or less in the case of positive openness, the openness 
combination, and channel-only geomorphons. By contrast, mean values were much lower, indicating at 
least some extreme channel head omissions/under-predictions, particularly among the openness maps. 
Standard deviations corresponded closely to RMSE values. Omission frequencies suggested that 
curvature exhibited somewhat lower levels of error than openness maps, whereas commission errors 
were low (<12%) across all methods. See Appendix B for detailed channel head detection statistics by 
province, land use, and site.  

 

  
 

Examination of the full distance distributions suggested all methods performed comparably, 
with substantial fractions (i.e., the IQR) of observations falling between 0 and -150 m (Figure 10). A test 
of the distributions revealed significant differences (Levene Test; p<0.0017) among group variances, 
thus a non-parametric test was used to compare the distributions. We found no significant difference 
(Kruskal-Wallis chi-square 8.51; p=0.13, n=148) associated with overall detection method despite lower 
negative and positive openness means. 
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Figure 10: Boxplot comparing distances between 148 channel head locations observed in the field and locations estimated by 
various depression detection methods: curvature (Curv), negative openness (Neg), positive openness (Pos), combined openness 
(OpCmb/Cmb), geomorphon reduced by flow accumulation and areal threshold (GeoChan/GeoCH), and geomorphon reduced by 
valley extent and areal threshold (GeoVal/GeoVL). For each distribution, the horizontal black line represents the median, the box 
represents the inter-quartile range, the whiskers delimit the 10th and 90th quantiles, and circles denote outliers. Red diamonds 
indicate mean values. 

Comparison across physiographic contexts revealed broad differences in performance (i.e., all 
methods were better in some provinces than others) that in some cases were also reflected within 
methods (e.g., one method may omit more in one physiography yet commit in another). Here, it is 
worth noting that unequal sample size was an important consideration in all comparisons, thus we have 
greater confidence in the results of certain subsets versus others. Specifically, there were only 11 
channel head observations in the Valley and Ridge, 12 observations in both the outer Coastal Plain and 
the Valley and Ridge dominated by karst and only 15 in the Blue Ridge. Overall, provinces resulted in 
significant differences in the distributions of distances to observed channel heads (Kruskal-Wallis chi-
square 187; df=7, p<0.0001, n=148). In general, channels were detected by all methods with greater 
efficiency in the Inner Coastal Plain and Piedmont physiographic provinces. In the Valley and Ridge 
province and within the glaciated Appalachian Plateau, most methods showed greater underestimates 
of channel extent, whereas much larger discrepancies were apparent in the Blue Ridge, the outer 
Coastal Plain, and the portions of the Valley and Ridge dominated by karst (Figure 11). 
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Figure 11: Boxplot comparing distances between 148 channel head locations observed in the field and locations estimated by 
various depression detection methods in eight physiographic contexts: glaciated Appalachian Plateau (APg), Blue Ridge (BR), 
inner Coastal Plain (CPi), outer Coastal Plain (CPo), Piedmont Lowlands (PL), Piedmont Uplands (PU), Valley and Ridge (VR), and 
karst-dominated Valley and Ridge (VRk). For each distribution, the horizontal black line represents the median, the box 
represents the inter-quartile range, the whiskers delimit the 10th and 90th quantiles, and circles denote outliers. 

Across provinces, the interaction with detection type showed significant heterogeneity among 
group variances (Levene Test; p<0.05). These differences were also related to significant differences 
(Kruskal-Wallis chi-squared=22.4; df=5; p<0.001) in mean distance in the Appalachian Plateau, where 
negative openness consistently underestimated the extent of channel heads relative to other methods 
(Figure 11). In the Blue Ridge and Valley and Ridge with karst, small samples were not sufficient to 
substantiate rather large differences and variability in apparent performance. In the Blue Ridge, most 
field sites were located on broad, talus-dominated slopes. Here, underestimates by openness appeared 
to contrast with those of curvature and channel-only geomorphons, which better detected small 
headward channels. However, valley-network constraints imposed on geomorphons resulted in further 
error when channels did not occur within a clear valley feature. By contrast, in the karst terrain of the 
Valley and Ridge province, all methods substantially overestimated channel initiation points located in 
the field because direct-detection found dry channels when seepage heads occurred further downslope. 

Among the remaining provinces, no difference was detected among methods for the inner 
Coastal Plain and the Piedmont Lowlands (Figure 11). By contrast, significant differences were detected 
among methods for the Outer Coastal Plain (Kruskal-Wallis chi-squared=18.5; df=5; p=0.002) and 
Piedmont Uplands (Kruskal-Wallis chi-squared=14.8; df=5; p=0.011). Once again, constraints imposed by 
broader valley delineations contributed to underestimates in the Coastal Plain. In the Piedmont Uplands, 
curvature showed greater underestimates than the other methods. 
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One area where the performance of the methods evaluated in this report clearly suffered was in 
geographies with extremely low relative topographic relief (e.g., talus slopes or coastal plains). Dealing 
with low topographic relief (i.e., signal to noise) has long been a challenge of hydrologic modelling with 
digital terrain data (Baker et al. 2007; Jasiewicz and Metz 2011, Passalacqua et al. 2012). This was 
evident in the Blackbird and Catoctin study sites (Figures 5 & 11), situated on the Delmarva Peninsula 
and the Blue Ridge Mountains, respectively. In both sites, channels characterized by local detection 
methods were excluded when delineation of the broader valley features did not extend far enough 
headward. This context differed from channels within well-defined valleys that are common in areas 
with more relief. However, geomorphons have an advantage in that one of the inputs to r.geomorphon 
is a user-specified flatness threshold. This threshold, defined as the difference (in degrees) between 
zenith and nadir lines of sight (below which features will be classified as flat), can be lowered in low-
signal landscapes to produce a map with fewer features classified as flat. The default value of one 
degree was used in all study sites for this project, but we will experiment with this regional dependent 
threshold in future research. 

Conversely, commission errors in the Valley and Ridge dominated by karst underscore one 
shortcoming associated with direct-detection techniques—they do not distinguish between channel-like 
terrain features and flowing-water channels. In this case, even visual inspection of the shaded relief 
suggested channels that were not corroborated in the field by even sporadic evidence of flowing water. 
Here, karstal flows may have diverted water from headwater channels only to emerge further 
downslope. Overall, the physiographic comparison in Figure 11 suggested that though all methods are 
capable of detecting some or most channels, curvature, combined openness, and geomorphons 
produced quantitatively similar results in the vast majority of contexts. 

Comparison across land use contexts revealed relatively similar performance across nearly all 
methods but significant differences in among-group homogeneity (Levene Test F=13.6; df=2; p<0.001). 
Distances were significantly different across classes (Kruskal-Wallis chi-squared=36.8; df=2; p<0.001) and 
across their interaction with detection method (Kruskal-Wallis chi-squared=55.7; df=17; p<0.001), as 
distributions appeared far more uniform within Urban than within either Forest or Agricultural sites 
(Figure 12). Comparisons across methods showed no significant differences despite notable variation in 
among-method homogeneity (Levene Tests; p<0.05). Part of these differences may have resulted from 
the underlying physiographic variation inherent in Forested sites spanning a range of physiographic 
contexts, whereas Agricultural and Urban sites occurred in a more limited set of provinces.  
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Figure 12: Boxplot comparing distances between 148 channel head locations observed in the field and locations estimated by 
various depression detection methods in three different land use classes. For each distribution, the horizontal black line 
represents the median, the box represents the inter-quartile range, the whiskers delimit the 10th and 90th quantiles, and circles 
denote outliers. 

 Overall, comparisons suggested that curvature, combined openness, and geomorphons often 
produced comparable detection results. However, generation of channel skeletons revealed an 
important shortcoming of regional topographic thresholds. Reliance on thresholds determined from the 
statistical distribution of values (i.e. departures from a normal QQ plot) made the results very 
susceptible to human alterations of the landscape or anomalies in the DEM used for analysis. Such 
alterations could radically change the distribution of terrain values resulting in features such as stream 
channels not meeting threshold criteria, even when they have a distinct topographic signature. For 
example, the Gettysburg study site contained a nearby quarry with extremely steep walls that skewed 
distribution of topographic values so that very few stream channels in the surrounding area met the QQ-
derived threshold (Figure 13). At the Herbert Run site, a modified DEM rather than the terrain itself 
caused a similar phenomenon (Figure 14). The DEM was obtained with deep, single-pixel-width hydro-
enforcement channels already burned in, and these “burned” channels skewed the distribution of 
terrain values in the same way as steep quarry walls in the Gettysburg DEM. We observed a similar 
phenomenon at the Gunpowder Falls site to a somewhat lesser degree, which used the same DEM as 
Herbert Run. Channel maps created using geomorphons at all three sites appeared unaffected by such 
anomalies because their delineation relies on spatial, as opposed to statistical, distributions of 
topography.  
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Figure 13: Channel skeletons delineated using QQ-derived threshold of curvature (left) and geomorphons (right). The quarry on 
the eastern edge of this study area skews the distribution of curvature values such that the QQ-threshold excludes almost all 
curvature pixels in the entire study area except those in the quarry. The geomorphon stream map is unaffected by the quarry 
and maps channel features throughout the study area.  

 
Figure 14: Channel skeletons delineated using QQ-derived threshold of curvature (left) and geomorphons (right). A hydro-
enforcement channel carved perpendicular to the highway in the bottom middle of the DEM skewed the distribution of 
curvature values such that the threshold excludes or severely fragments stream channels with distinguishable topographic 
signature (e.g., bottom left, right edge). This local anomaly does not affect channel skeletons delineated using geomorphons. 

The project team found that roadside and agricultural ditches were often identified by the 
geomorphon approach in much in the same way as stream channels. Depending on the context, these 
ditches may or may not be desirable in a resultant stream map. For example, if a ditch was not 
connected to a stream but instead functioned as detention basin along a road, it may not be desirable to 
include in a stream network map. However, if a ditch was directly connected to a stream via an outfall, 
then it could be interpreted as another channel in the network. Regardless, the fact that the 
geomorphon approach was capable of identifying ditches should prove valuable and will certainly be 
explored in-depth in future research related to ditch mapping.   

Effects of geomorphic and cartographic elimination on channel skeletons 
In addition to detecting depressions, we compared the impacts of various elimination methods 

used to remove spurious pixels from depression maps. Specifically, it was of interest to quantify the 



29 
 

number detections removed by geomorphic (i.e. threshold flow accumulation or valley contiguity) 
versus cartographic (i.e. histogram-derived area threshold) approaches (Figure 15). Moreover, this 
comparison was informative regarding the processing requirements for each detection method. For 
example, the flow accumulation elimination approach advocated by Passalacqua et al. (2012) and 
Sangireddy et al. (2016) requires a fully developed flow field in order to successfully reduce spurious 
detections in skeletons. Flow field development from LiDAR involves overcoming roadways, bridges, 
culverts, and other apparent obstructions to flow. Although there are algorithms to accomplish this task, 
none are fully automated due to the unique circumstances of stream crossings in the broader landscape, 
and all are computationally intensive. By contrast, elimination by connection to river valleys employed in 
the case of geomorphons required far less processing as a simple overlay analysis. Using the smoothed, 
10-m NED DEM, it took just 10 hours to classify river valleys for the entire Chesapeake Bay watershed. 

  
Figure 15: Comparison of raster cells identified as depressions by each of four detection methods: (1) Curvature (gray), (2) 
Negative Openness (green), (3) Positive Openness (blue), (4) Geomorphons filtered by flow accumulation (red), and 
Geomorphons filtered by connection to valley network (pink) as an average proportion of the surrounding landscape. 
Subsequent columns quantify the pixels remaining following a geomorphic removal (i.e., by flow accumulation threshold or 
valley extent) and cartographic removal to obtain the channel skeletons. 

Analysis of pixel counts indicates that during initial detection, positive openness identified far 
more pixels than any other technique and geomorphons the least, on average. Site-specific 
interpretation (Appendix C) confirms this observation. Positive openness identified far greater fractions 
of the landscape as depressions at every site. Although geomorphons did not always identify the 
smallest landscape proportions, it showed the smallest variation across sites (i.e., SD~1%). Both 
curvature and negative openness showed intermediate detection proportions, yet twice the variability 
across sites. Site-specific analysis revealed that when curvature and openness detected fewer 
depressions pixels than geomorphons, such detections were driven by topographic anomalies (e.g., 
open pit mines and hydrologically enforced terrain discussed earlier) that artificially inflated thresholds 
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and lead to lower detection rates. Under anomalous topographic thresholds, curvature and openness 
were less effective at detecting channels than geomorphons. 

Geomorphic removal (by flow accumulation or valley network) was substantial among all 
methods, but especially so for curvature and geomorphons, where the average rates exceeded 44% or 
nearly half the initial pixels (Figure 15). For negative and positive openness measures the removals were 
less extensive, averaging 36% and 29%, respectively. By contrast, the inverse pattern prevailed for 
cartographic removal, where curvature and geomorphon experienced only 11-12% removal, whereas 
the openness measures experienced 20-22%. The resulting skeletons retained between 51% (positive 
openness) and 57% (all others) of the initial pixels on average. These patterns suggest that when 
curvature and geomorphons produced spurious results, they were more likely to be in locations with 
small contributing areas. By contrast, positive and negative openness results produced greater spurious 
results overall, resulting in fewer removals by either geomorphic or cartographic approaches. 
Combination of positive and negative skeletons apparently further mitigated the number of spurious 
detections, resulting in more effective performance noted above. 

Rationale for selecting skeleton delineation method 
 Our collective experience exploring and assessing direct-detection methods and spurious 
elimination techniques led to the selection of geomorphons as the terrain analysis of choice for 
delineating channel skeletons. First and most importantly, geomorphon was the only technique that did 
not require empirical determination of a local statistical threshold value for delineating depressions. Our 
experience suggested that empirical analysis using QQ plots did not lend itself well to automation, being 
susceptible to statistical artifacts and terrain anomalies. Although the approach appeared to work 
reasonably well in many cases, small differences in the critical threshold values could nonetheless lead 
to large differences in depression delineation, calling into question the objectivity and reproducibility of 
this approach over different areas and as human populations continue to modify terrain. With this 
important distinction in mind, curvature, combined openness, and geomorphons, with few exceptions, 
all performed comparably and reasonably well at detecting depressions, whereas individual openness 
metrics were far less reliable or consistent. 

 As a geomorphic approach for eliminating spurious detections of depression in any method, the 
flow accumulation method suggested by Passalacqua et al. (2010, 2012) and Sangireddy et al. (2016) 
appeared generally quite effective. Excluding depressions that occur high up on hillslopes, but without 
imposing a constant support area for channel generation was an entirely rational approach, particularly 
in unmodified topography. The drawback for this technique was that it required processing a flow field 
(i.e., a flow direction surface) over the full extent of LiDAR terrain. This step carries with it a host of 
embedded and process-intensive decisions about whether or not to fill sinks within the DEM surface or 
whether to breach dam-like features such as roads or downed trees for every possible flow path. Even 
though it is possible to automate these and similar procedures, it is impossible to do so with any 
assurance that they will not introduce further error into the terrain surface. For this important reason, 
we sought to limit flow-field processing in our method. A similar geomorphic approach was proposed by 
Clubb et al. (2014) involving analysis of longitudinal profiles, but like previous approaches, it presumed 
flow paths represent a result of landscape evolution and were thus best suited for unmodified terrain. In 
the highly modified landscapes of the Chesapeake Bay watershed, such approaches would have limited 
applicability. 

 In discussing channel head detection in terrain, many authors have advocated for the 
importance of valleys as both precursors to channel detection as well as geomorphic consequences of 
channel erosion (Montgomery and Dietrich 1988; Montgomery et al. 1993; Luo and Stepinski 2008; 
Jasiewicz and Metz 2011; Clubb et al. 2014; Hooshyar et al. 2016). For this reason, we assessed the 
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potential for delineations of river valleys to eliminate spurious depressions. In our initial interpretation, 
headwater river valleys were valley-like features assessed across broader extents (i.e., a 200 m radius) 
than channels. Moreover, river valleys were defined those valley features that were contiguous with the 
existing NHD hydrography. Based on the 10-m NED, we were able to delineate valleys in the Chesapeake 
Bay Watershed within a single day, and used channel contiguity with these valleys as the basis for our 
geomorphic elimination. Our results suggested that with two important exceptions, valley delineation 
produced comparably effective elimination results with far greater processing efficiency than flow 
accumulation thresholds. Exceptions occurred in areas of low relative relief such as the Delmarva or 
talus slopes, where low signal-to-noise in terrain surfaces prevented accurate valley delineations. Since 
our initial analysis, we have found that lowering the flatness threshold (i.e., being less conservative 
about what constitutes a valley-like depression) mitigates many of these errors. The second exception 
occurred in developed landscapes where roadway embankments produced overestimation of valley 
extents. In these contexts, we found that raising the flatness threshold (i.e., being more conservative 
about valley extents) mitigated the errors. In such landscapes, more aggressive removal was successful 
because channels outside of the more conservative valley delineations were typically incised due to 
augmented stormwater runoff from paved surfaces and thus were detected by their clear topographic 
signature and contiguity with downslope valleys. With these important exceptions in mind, we plan to 
refine the 10-m NED DEM valley delineations with LiDAR-based delineations in future work to allow for 
improved alignment of resulting products. We anticipate that this effort will eliminate many, if not all, of 
the errors observed in our analysis thus far. 

Geoprocessing models 
 Many geoprocessing models were developed over the course of this project. Many were 
intermediate, serving only to iterate tasks over multiple DEMs, whereas others were designed to 
automate workflows. After performing the evaluations described in previous sections of this report and 
taking their findings into consideration, we developed (using ArcGIS Desktop 10.6) a suite of three key 
geoprocessing models to automate channel network development using geomorphons. These models 
were: 1) Geomorphon Channel Skeleton, 2) Channel Skeleton Connectivity, and 3) Network Derivation. 
Each may be employed in loops to iterate through successive DEMs or parallelized for more rapid 
processing. 

 The first model, Geomorphon Channel Skeleton, automates the process of channel skeleton 
development from geomorphon maps. This model isolates the channel-like depressions in a 
geomorphon map, applies geomorphic elimination via connectivity to a broader valley network, and 
applies cartographic elimination via histogram-derived areal thresholding (Figure 16). As input, the 
model uses a geomorphon map calculated at the channel extent, and a broader valley network. The first 
step in the workflow is isolation of an initial channel skeleton consisting of all pits and valleys from the 
input geomorphon map. This is done using the Raster Calculator expression:  

Con(("%Input channel-extent geomorphons%" == 9) | ("%Input channel-
extent geomorphons%" == 10),"%Input channel-extent geomorphons%") 

Where geomorphons with a code of 9 are valleys, and those with a code of 10 are pits. Following the 
isolation of an initial channel skeleton, geomorphic elimination by means of contiguity with the broader 
valley network is imposed using a Cost Allocation function. In this function, the valley network is used as 
the source raster and the initial channel skeleton is used as the cost raster. The output of this function is 
an allocation raster of pixels belonging to the source raster (i.e., valley network) and pixels from the cost 
raster that are contiguous with the source raster (i.e., channel-like depressions originating outside of, 
but connected to, the valley network). All other pixels contain NoData. Because this allocation raster 
includes pixels belonging to the broader valley network, the channel-like pixels must be isolated via the 
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Extract by Mask function, using the allocation raster as the input and the initial channel skeleton as the 
mask. This step completes the geomorphic elimination phase and produces a channel skeleton raster 
consisting of all channel-like depressions contained by, or contiguous with, the broader valley network.  

 
Figure 16: Geomorphon Channel Skeleton geoprocessing model. From left to right the model isolates channel-like features, 
discards those features not contiguous with broader valley network, and discards features not meeting a minimum area 
criterion.  

To further reduce the skeleton raster to contain only the pixels most relevant to stream 
channels, cartographic elimination is applied. This is done by first performing a Region Group operation 
on the channel skeleton to identify each contiguous region of pixels and calculate the number of pixels 
comprising each region. This information is used as input to a Calculate Value script that returns a pixel 
count threshold for cartographic elimination. This script performs the calculations needed to produce a 
histogram by 1) calculating the number of unique regions in the channel skeleton, 2) calculating the 
number of bins in the histogram by taking the square root of the number of unique regions, and 3) 
calculating bin width by dividing the range of pixel counts by the number of bins. Bin width is returned 
and used in a Raster Calculator expression as the minimum pixel count required for a region of channel 
skeleton pixels to be retained in the final channel skeleton. This serves as cartographic elimination to 
remove the numerous yet small and spurious groups of pixels still remaining after geomorphic 
elimination. Lastly, the remaining channel skeleton is used as input to Region Group once more to 
discretize each contiguous region of the skeleton. The outputs of this model are a geomorphically- and 
cartographically-reduced channel skeleton consisting of pixels with a value of 1 or NoData, and a region 
grouped version of the same skeleton where each region has a unique ID and pixel count. An example of 
representative output from the Geomorphon Channel Skeleton geoprocessing model is presented in 
Figure 17. 
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Figure 17: Representative output from the Geomorphon Channel Skeleton geoprocessing model showing the geomorphon 
output of valley (blue) and pit (black) features (A); isolated channel-like features overlain on shaded relief (B); channel-like 
features contained by the broader valley network (C); and resulting channel skeleton following areal removal (D). In C, 
geomorphic elimination omits several tributary channels, whereas in D, potential errors of commission along roadsides are 
circled in red. 

In the example, the precision of the method is apparent, as are some of the typical forms of 
errors of both omission and commission. In this case, constraints from the valley network removed 
features from a few tributaries that could probably have been included, whereas several roadsides 
produced channel-like depressions that were retained in the output. Future work will evaluate how 
improved valley characterization can alleviate the former error, whereas QA/QC of output in concert 
with high-resolution road maps may help distinguish and mitigate the latter forms of error. 

 The next key geoprocessing model is called Channel Skeleton Connectivity and it uses the 
outputs from the Geomorphon Channel Skeleton model and a DEM to create a least-cost-connected 
network linking the channel skeleton regions (Figure 18). As input, this model uses the channel skeleton 
regions derived from the final step of the previous model, the geomorphon map calculated at the 
channel-extent, and DEM values restricted the extent of the valley network. First, the model uses the 
following Raster Calculator expression to create a cost surface that gives preference to convergent 
features at lower elevations and penalizes divergent features or those at higher elevations: 

Con((IsNull("%Input channel regions%") & ("%Input channel-scale 
geomorphon%" == 7)),(5*"%VN DEM%"),Con(IsNull("%Input channel 
regions%"),(100*"%VN DEM%"),"%VN DEM%")) 

Where geomorphons equal to 7 are classified as hollows. These features are convergent and often 
associated with stream channels, however they are also found frequently in other portions of the 
landscape and thus were not included in the channel skeleton. The cost surface weights preferential 

A B 

C D 



34 
 

flow along low points within the channel skeleton first, low points within hollows 5 times less, and low 
points outside of convergent features 100 times less. Next, the model uses the Cost Connectivity 
function to connect the channel skeleton regions along the newly created cost surface. The output of 
this function is a polyline connecting every region in the channel skeleton to its closest neighbors along a 
least-cost path (Figure 19). In practice, this operation allows a single threaded path that overcomes 
roadways and other dam-like obstructions occurring within valley bottoms in the LiDAR. Because the 
channel skeleton is already delineated, the pathways through dams or across roadways are short and 
more direct than would be expected from broader flow field development. The final step in this model is 
to rasterize the connectivity polylines for use in the next geoprocessing model.  

 
Figure 18: Channel Skeleton Connectivity geoprocessing model. From left to right the model creates a cost surface incorporating 
the channel skeleton, DEM, and convergent geomorphons; connects the channel skeleton along a least cost path; and converts 
the output to a raster.  

 A representative example of the output of the Channel Skeleton Connectivity tool is presented in 
Figure 19. It should be noted that while this geoprocessing model was developed in ArcGIS Desktop 
10.6, trial runs frequently crashed without reporting any errors. Without making any changes to the 
model whatsoever, it was successfully run in ArcGIS Pro 2.2. As mentioned previously, the project team 
began to explore the GRASS GIS add-on r.stream.extract that appears to have much of the same 
functionality as this geoprocessing model in a more stable and computationally efficient package. We 
are currently investigating its applicability in our workflow.  
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Figure 19: Representative output from the Channel Skeleton Connectivity geoprocessing model showing the results from Figure 
17 linked by least-cost pathways. 

 The last geoprocessing model is called Network Derivation. This model uses the output from the 
previous two models to lower the elevation of the channel skeleton and least-cost paths in the DEM, 
compute flow directions from the altered DEM, and perform a weighted accumulation of the channel 
skeleton regions to produce a single-thread stream grid raster (Figure 20). As inputs, it requires DEM 
values restricted to the extent of the valley network, channel skeleton raster, and the connectivity raster 
from the previous model. First, the model “burns” the channel skeleton and least-cost connections into 
the valley network DEM using the following Raster Calculator expression: 

Con((IsNull("%Input channel skeleton%") & IsNull("%Input connectivity 
raster%")),("%VN DEM%" + 10), "%Input DEM%") 

Following this step, depressions in the burned DEM are filled and D8 flow directions are calculated over 
an extent limited to the valley network. Next, a weighted flow accumulation is performed using the 
channel skeleton as a weight raster. This ensures that accumulation begins at the channel heads 
detected by geomorphons and continues downslope along the least cost paths linking the skeleton. 
Finally, a small threshold (e.g., 20 pixels) is applied to the weighted accumulation raster to remove very 
short segments from the raster and produce a single-pixel-width stream grid. It is worth noting that this 
step is cartographic in nature and the threshold can be chosen arbitrarily; it may need to be increased to 
produce a truly single-threaded grid, though it should be kept as small as possible to minimize 
movement of the channel head.  
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Figure 20: Network Derivation model. From left to right, the model lowers the elevation of the channel skeleton and least cost 
paths, fills the burned DEM, computes flow directions, computes a weighted accumulation using the channel skeleton as a 
weight raster, and removes very short segments not meeting a small accumulation threshold.  

 The purpose of this model is to create a single-pixel-width stream grid, akin to the “Str” grid 
produced in the ArcHydro workflow or the “src” grid produced in the TauDEM workflow. These grids are 
compatible with, and used as input to, various standard stream segmentation, linking, ordering, and 
networking tools within ArcGIS, ArcHydro, and GRASS GIS. If these outputs are not desired, it would not 
be necessary to run the Network Derivation model.  

Flow permanence  
Estimates of 7Q2 for January and July were obtained from the SWToolbox for all proximate 

gauges surrounding each study location. From gauge observations on each graph, we developed least-
square fits within log-log space. We used the fitted regressions to extract drainage areas required to 
support flows of 0.1 cfs at each study site (Figure 21). 

 
Figure 21: Plots showing relationship between drainage area and 7Q2 low flow at stream gauges surrounding each study site. 
7Q2 estimates are shown as black (January) and red (July) points. Lines of best fit are shown in black (January) and red (July) 
dashed lines. A blue line is drawn at the threshold 7Q2 of 0.1 cfs and the intersection between lines of best fit and this threshold 
discharge are marked with vertical pink lines.  
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Summary of estimated drainage areas sufficient to generate 0.1 cfs are presented in Table 2 
below. The results were fairly consistent across sites, with drainage areas between 0.2-0.3 square miles 
typically needed in January and larger drainage areas between 0.2-0.9 square miles required in July. 
Several anomalously large values were estimated for January at the Catoctin and Ravensburg sites 
consistent with locally important subsurface flows in karst or limestone-dominated terrain. Similarly, the 
area required in Little Difficult Run site was more than twice as great. This pattern suggested limited 
wintertime water yields in the densely urbanized landscape in which Little Difficult Run is situated. By 
contrast, most July estimates were 30% to 75% greater than their January counterparts as expected 
under greater ET demand. Exceptions to this pattern occurred in the Fair Hill site and the Green Ridge 
site, where areal estimates for July exceeded January by 570% and 1826%, respectively. In both cases, 
this pattern was driven by very low summer water yields in small drainages (Figure 21). Fair Hill was 
situated in an area of row crop agriculture that may be indicative of high ET demands, whereas 
headwaters in Green Ridge State Forest occur on a series of dry rocky ridges with limited water storage. 
Catoctin and Gettysburg generated anomalous July drainage area estimates that were lower than in 
January, a counter-intuitive result driven by lower water yields across larger drainages that lowered 
regression slopes. The lower yields may result from agricultural water withdrawals or losses to 
subsurface flow through fractured limestone and dolomite in valley floors. Little Difficult Run also 
showed anomalous values where baseflows remained relatively constant across all drainages; possibly 
due to return flow from lawn irrigation.  

 

 

 
Overall, our approach demonstrated potential for probabilistic delineation of ephemeral and 

intermittent flows based on regional regressions that provided some insight into physical or socio-
cultural impacts on water yield. Importantly, our approach relied on empirical datasets and existing 
methods. Future work will investigate the potential for applying similar equations employed by USGS 
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StreamStats more broadly, or the potential for expanding the geographic area for which StreamStats can 
produce low-flow statistics, and evaluating the resulting estimates. 

Conclusion 
 Accurate mapping of stream channels is a longstanding problem in the fields of geomorphology 
and hydrography. The methods presented in this report form a framework for automated stream 
channel mapping that is soundly based in geomorphic theory, computationally efficient, pragmatic, and 
readily applied to nearly all tested landscapes. Using concepts from computer vision to classify terrain 
we present a unique workflow that delineates stream channels “where they are”, rather than “where 
they should be”.   

 The underlying principle on which our method relies is a recent advance in the field of 
geomorphology called geomorphons. We used geomorphons to classify the landscape at both a broad 
valley extent and at a narrower channel extent. Using this information, we were able to identify 
depressions in the terrain corresponding to stream channels that were situated in or contiguous with 
broader stream valleys without expending effort trying to detect channels where they don’t exist or 
remain disconnected from broader networks. 

 Our results indicate that the effectiveness of geomorphons at detecting stream channels is 
comparable to, or better than, other detection methods including curvature and topographic openness, 
employed in several stream mapping workflows published in recent years. A key advantage of 
geomorphons is that they are inherently multi-scalar; they are able to identify terrain features at 
different length scales simultaneously. Other advantages include increased computational efficiency and 
practicability, independence from vague or region-specific statistical thresholds, and a wealth of 
contextual information related to the geometry of the terrain form and its surroundings.  

 Although we present a robust and novel method for stream channel mapping, further research 
could potentially improve the results. We are only beginning to tap into the potential for geomorphons 
to inform our analysis by utilizing only the ten common landform classes. Many additional available 
outputs including the full suite of 498 unique ternary codes, shape, area, relative position, may yet 
inform our interpretation. This information can be used to further inform channel delineation and to 
characterize resulting channel maps. As we will already be mapping channel features in LiDAR with 
geomorphons, it makes sense in future iterations to explore valley mapping at this same level of detail, 
albeit with different search extents. Increased valley network precision may allow users to better assess 
contiguity of the network and to detect region-specific context problems such as development or low 
relative relief. As channel maps are derived, we expect to fully automate generation of linear flow 
networks compatible with the NHD. 
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Appendix A 
A1: Quantile-Quantile plots of curvature distributions by site (normal distribution 
plotted in red) 
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A2: Quantile-Quantile plots of positive openness distributions by site (normal 
distribution plotted in red) 
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A3: Quantile-Quantile plots of negative openness distributions by site (normal 
distribution plotted in red) 
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A4: Site-specific quantile-quantile thresholds of curvature, positive openness, and 
negative openness 
 

Site Landuse Province Method Theoretical Quantile Empircal value
Blackbird Ag Coastal Plain outer Curvature -1.25 -1.91
Blackbird Ag Coastal Plain outer Positive Openness -1 1.55
Blackbird Ag Coastal Plain outer Negative Openness 1 1.571
Catoctin Forest Blue ridge Curvature -1.75 -8.08
Catoctin Forest Blue ridge Positive Openness -1 1.508
Catoctin Forest Blue ridge Negative Openness 1 1.566
Cornell/Hammond Ag/Forest Appalachian Plateau glaciated Curvature -1 -1.79
Cornell/Hammond Ag/Forest Appalachian Plateau glaciated Positive Openness -1 1.522
Cornell/Hammond Ag/Forest Appalachian Plateau glaciated Negative Openness 1 1.566
Fair Hill Ag Piedmont Upland Curvature -1.7 -15.23
Fair Hill Ag Piedmont Upland Positive Openness -1 1.513
Fair Hill Ag Piedmont Upland Negative Openness 1 1.574
Gettysburg Ag Piedmont Upland Curvature -1.6 -1.92
Gettysburg Ag Piedmont Upland Positive Openness -1 1.549
Gettysburg Ag Piedmont Upland Negative Openness 1 1.574
Green Ridge Forest Valley and Ridge no karst Curvature -1.8 -10.36
Green Ridge Forest Valley and Ridge no karst Positive Openness -1 1.495
Green Ridge Forest Valley and Ridge no karst Negative Openness 1 1.563
Gunpowder Forest Piedmont Upland Curvature -1.3 -1.86
Gunpowder Forest Piedmont Upland Positive Openness -1 1.55
Gunpowder Forest Piedmont Upland Negative Openness 1 1.57
Herbert Run Urban Piedmont Upland Curvature -2.6 -2.38
Herbert Run Urban Piedmont Upland Positive Openness -1 1.555
Herbert Run Urban Piedmont Upland Negative Openness 1 1.573
Little Difficult Run Urban Piedmont Lowland Curvature -1.2 -3.93
Little Difficult Run Urban Piedmont Lowland Positive Openness -1 1.522
Little Difficult Run Urban Piedmont Lowland Negative Openness 1 1.57
Odenton Urban Coastal Plain inner Curvature -1.25 -4.19
Odenton Urban Coastal Plain inner Positive Openness -1 1.523
Odenton Urban Coastal Plain inner Negative Openness 1 1.574
Patuxent Forest Coastal Plain inner Curvature -1.5 -4.3
Patuxent Forest Coastal Plain inner Positive Openness -1 1.532
Patuxent Forest Coastal Plain inner Negative Openness 1 1.573
Ravensburg Forest Valley and Ridge karst Curvature -1.5 -0.85
Ravensburg Forest Valley and Ridge karst Positive Openness -1 1.536
Ravensburg Forest Valley and Ridge karst Negative Openness 1 1.569
Sopers Branch Forest Piedmont Lowland Curvature -1.25 -2.64
Sopers Branch Forest Piedmont Lowland Positive Openness -1 1.527
Sopers Branch Forest Piedmont Lowland Negative Openness 1 1.568  
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Appendix B 
B1: Channel head detection statistics by physiographic province 
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B2: Channel head detection statistics by land use 
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B3: Channel head detection statistics by site 
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