Reliability of Two-Dimensional (2D) Hydrodynamic Models for Assessing Susceptibility of Stream Restorations to Flood Damage and Potential Effects of Climate Change

Research Question: How can different restoration approaches or techniques reduce the impacts of future climate change?

Presenter: Art Parola, Ph. D, P.E., Director, University of Louisville Stream Institute

Collaborators and contributors: Ann Arundel County, Prince Georges County, Maryland Department of Natural Resources, Maryland State Highway Administration, RK&K, Greenvest, Underwood & Associates, Berrywood Community

Are 2D Hydrodynamic Models a reliable tool for stream restoration design?

Research Questions Addressed:

- Research Phase I: Evaluate a <u>design approach for stability</u>: use of 2D models to develop engineering design of restoration sites
- Research Phase II: <u>current and future climate conditions are evaluated</u> through different simulated flows

Expected Findings

- Areas of restoration sites with expected low or high velocities/stresses will be effectively predicted by 2D models. Moderate values / threshold conditions will help refine use of the 2D model as a tool
- 2D models will be conditionally effective- better definition of areas where
 models are reliable under current and future flooding scenarios

Reliability Analysis: Detailed Site Surveys

- 5 Sites in total
- 2D Hydrodynamic modeling requires a water-tight container (no holes)
- Resolution must be appropriate to capture key features

Reliability Analysis: Ground and Aerial Imagery to Define "Damaged" Areas

- Damaged and undamaged areas are used as training data in the model
- Damage does not mean poor design

Cat Branch

Cattail Creek

Furnace Creek

Reliability Analysis: 2D Hydrodynamic Modeling

- Determine predicted velocities and stresses in damaged/un-damaged areas
- Evaluate 2D model
 effectiveness in different
 restoration types and
 components

Reliability Analysis: 2D Hydrodynamic Modeling

- Constrain / approximately calibrate models based on estimates of observed flooding (Phase 1)
- Use direct sensing of floods, partner observations and surrounding gage data
- Use extreme flood estimates for current and future conditions analysis (Phase 2)

Furnace Creek

Phase I: 2D Model Reliability Analysis

Phase II: Current and Future Conditions Analysis

Acknowledgements

Thanks to the Chesapeake Bay Trust and all the funding partners for supporting this work. Thanks to Sadie and the collaborators who are making this project possible.

Partners and collaborators:

MD DOT SHA: Ryan Cole, Nora Bucke, Kevin Wilsey

MDE: Bill Seiger, Deb Cappuccitti, Jeff White

MD DNR: Ari Engelberg

Ann Arundel County: Erik Michelsen, Nasrin Dahlgren, Bryan Perry,

Karen Jennings

Prince Georges County: Joanna Smith, Jerry Maldonado, Mark

McKibben, Frank Galosi

Montgomery County: Kenny Mack

SERC: Cynthia Gilmour

<u>RK&K</u>: Drew Altland, Tom Earp, Aaron Maxwell, Jason Coleman <u>Greenvest</u>: Laura Kelm, David Merkey, Dana Cooper, Brett Berkley Underwood & Associates: Keith Underwood, Chris Becraft, Keith

Binsted, Heather Johnson, Beth Zinecker

<u>Tetra Tech</u>: Mark Sievers, Jasmine DunhamTyson

Berrywood Community: Molly LaChapelle, Bob Royer

<u>Arundel Rivers</u>: Jennifer Carr McCormick Taylor: Scott Lowe

EQR: Katrina Davis

